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Motivation

I In QCD, Hadrons melt into quark-gluon plasma (QGP) via
transition known as confinement-deconfinement (CD)
transition. The transition is a cross-over for physical quark
masses.

I The CD transition is present in all SU(N) [N > 1] theories.



Motivation

I In pure SU(N) gauge theories, the CD transition is described
by order parameter, the average of Polyakov loop (〈L〉) and
the ZN symmetry. Order of the transition depends on N .

I The ZN symmetry is explicitly broken when matter fields are
included into SU(N) gauge theories as a result the CD
transition becomes a cross-over.

I In SU(N) Higgs theory there are very few non-perturbative
studies on explicit breaking of ZN symmetry. And also it is
important to understand the similarities (differences) between
bosonic and fermionic matter as to how they affect the ZN

symmetry.
I We study the ZN symmetry in SU(N) Higgs theory using

Monte Carlo simulations.



ZN symmetry

I Partition function of a pure SU(N) gauge theory at high
temperature (T = 1

β ) is

Z = Tre−βH =

∫
dA〈A|e−βH |A〉 =

∫
bc

DAe−S(A) (1)

S(A) =

∫ β

0
dτ

∫
V
d3x

{
1
2
Tr (FµνFµν)

}
(2)

I Where Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

I The allowed A’s in the path integral are periodic in β,

Aµ(~x , 0) = Aµ(~x , β) (3)



Contd...

I S(A) and Z are invariant under the gauge transformation
V (~x , τ), Aµ transforms

Aµ −→ VAµV
−1 − i

g
(∂µV )V−1 (4)

I V (~x , τ) need not be periodic, as long as it satisfies the
following eqn.

V (~x , τ = 0) = zV (~x , τ = β) (5)

Where z ∈ ZN ,with z = 1exp(2πin
N ), n = 0, 1, 2...N − 1,

I Therefore, all the allowed gauge transformations at finite
temperature are classified by ZN group.

I ZN is a symmetry of Z.



Order parameter of the theory

I The Polyakov loop transforms nontrivially under ZN .

L(~x) =
1
N

Tr
{
Pe

(
−ig

∫ β
0 A0(~x ,τ)dτ

)}
(6)

Under ZN ,L −→ zL . 〈L〉 =
∫
dALe−S∫
dAe−S .

I 〈L〉 is an order parameter for CD transition and it is analogous
to the magnetization in a Z (N) spin system.



ZN symmetry (with matter fields)

I The action in presence of fundamental Higgs field is given by,

SE =

∫ β

0
dτ

∫
V
d3x

[
1
2
Tr (FµνFµν) +

1
2
|DµΦ|2 +

m2

2
Φ†Φ

+
λ̄

4!
(Φ†Φ)2

(7)

I Being a bosonic field,Φ(~x , 0) = Φ(~x , β). Under above
non-periodic gauge transformations,Φ′(0) 6= Φ′(β)
(when z 6= 1 ).

I It is not clear how this ZN explicit breaking will affect the CD
transition. Fluctuations of the gauge and Higgs fields need to
be considered.



Monte Carlo simulations of the CD transition

For simulations, we discretise the action on a 4D euclidean space,
Φ(x)→ Φn, e iagAn,µ → Un,µ. Further we scale Φ, λ̄ and m as

Φ(x)→
√
κΦn

a
, λ̄→ λ

κ2 ,m
2 → (1− 2λ− 8κ)

κa2

The discretised action is given by,

S(U,Φ) = βg
∑
p

Tr(1− 1
2N

(Up + U†p))− κ
∑
µ,n

Re
[
Tr(Φ†n+µUn,µΦn)

]
+
∑
n

[
1
2
Tr
(

Φ†nΦn

)
+ λ

(
1
2
Tr
(

Φ†nΦn

)
− 1
)2
]
.

(8)



Contd...

I Here βg = 2N
g2 . Plaquette Up is the product of links around an

elementary square ’p’ (Up = Un,µUn+µ,νU
†
n+ν,µU

†
n,ν).

Figure: Sketch of an elementary plaquette UP



Contd...

I In the Monte Carlo simulations an initial configuration of Φn

and Uµ,n is repeatedly updated to generate a Monte Carlo
history.

I In an update a new configuration is generated from an old one
according to the Boltzmann probability factor e−S taking care
the principle of detailed balance.

I Boltzmann factor and principle of detailed balance are
implemented using pseudo heat-bath algorithm 1 2 for the Φ
field and the standard heat-bath algorithm 3 for the link
variables Uµ’s.

I To reduce auto-correlation between consecutive configurations
we use over-relaxation method.

1B. Bunk. Nucl. Phys. B 42, 556 (1995).
2A.D. Kennedy et.al PLB 156, 393 (1985) .
3M. Creutz. Phys. Rev. D 29, 306 (1984).



Results
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I In this Higgs phase diagram, the Higgs symmetric (〈Φ〉 = 0)
and broken phase (〈Φ〉 6= 0) are separated by the Higgs
transition line.

I We compute the Polyakov loop distribution at various points
on this phase diagram to study the ZN symmetry.

I Since the CD transition behaviour has been observed to be
sensitive to Nτ , we consider larger Nτ for some values of the
bare parameters.



Polyakov loop distribution (close to Higgs transition line)
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Figure: SU(2) and SU(3)

I There is no Z2 symmetry in the distribution H(L) of the
Polyakov loop for SU(2).

I Similarly for SU(3) there is no Z3 symmetry of the Polyakov
loop distribution.

I Here ZN symmetry is explicitly broken.
I Largest peak corresponds to the stable state and others

correspond to meta-stable states.



Polyakov loop distribution (Away from Higgs transition line)
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Figure: SU(2) and SU(3)

I The two peaks in case of SU(2) are related by Z2 symmetry
(L→ −L).

I Similarly the distribution of the Polyakov loop for SU(3) has
the Z3 symmetry.

I So away from the Higgs transition line the ZN symmetry is
restored.



H(L) and Gauge action showing Z2 symmetry
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I Within errors H(L) = H(−L) and Sg (L) = Sg (−L).
I This is clear evidence that there is Z2 symmetry.
I This realization of the Z2 symmetry makes the CD transition

second order.



This symmetry restoration leads to critical behavior
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I The value of the Binder cumulant(UL = 1− 〈L4〉
3〈L2〉2

) at the
crossing point for different volumes is consistent with the
3D-Ising Universality class.

I It is clearly seen that, by scaling βg by t = (
βg−βgc
βgc

)N
1
ν
s all

different volume curves collapse on one line.
I This corresponds to a second order phase transition.



Results for Z2 symmetry (Nτ = 4)
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I The ZN symmetry is explicitly broken in the Higgs broken
phase and close to the Higgs transition line in the Higgs
symmetric phase.

I Restoration of ZN symmety happens in the part of Higgs
symmetric phase away from Higgs transition line.



SU(N) Higgs theory Nτ dependence
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I The ZN symmetry breaking line will approach Higgs transition
line for Higher Nτ .



Summary
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I ZN symmetry explicit breaking decrease with decrease in κ.
I On the other hand, Higgs condensate decreases with decrease

in κ.



Summary

I Our results suggest that the Higgs condensate plays a role of
symmetry breaking field like external field in the Ising model.

I We believe increase in phase space of the Higgs field is
responsible for Z2 restoration.
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Thank you



[
f

T 4

]β
β0

= Nτ
4
∫ β

β0

dβ′(ST − S0) (9)



DµΦ = ∂µΦ +
(1− Uµ)

a
Φ (10)

(DµΦ)†(DµΦ) =
1
a2 [Φ†x+µΦx+µ+Φ†xΦx−Φ†xU

†
x ,µΦx+µ−Φ†x+µUx ,µΦx ]

(11)

SH =
∑
x

[
8a2

2
Tr(Φ†xΦx)− a2ReTr(Φ†x+µUx ,µΦx)

−m2a4

2
Tr(Φ†xΦx) +

λa4

2
Tr(Φ†xΦx)2]

(12)

Φ(x)→
√
kΦn

a
, λ→ λ

k2 ,m
2 → (1− 2λ− 8k)

ka2 (13)

SH =
∑
n

[−κTr(Φ†n+µUn,µΦn)+
1
2
Tr(Φ†nΦn)+λ(

1
2
Tr(Φ†nΦn)−1)2]

(14)
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