Fireball tomography with heavy flavor

Sandeep Chatterjee IISER Berhampur in collaboration with Piotr Bożek AGH-UST, Krakow

based on: Phys. Rev. Lett. **120**, 192301 (2018) (arXiv: 1712.01189); arXiv: 1804.04893

DAE-HEP, IIT-M, 14 December, 2018

Tomography of the fireball

- Tomography = imaging a specific cross-section of the object (fireball)
- In case of the fireball, highly dynamical structure, hence the image is expected to have a strong dependence on the time at which it is taken
- Further, the transverse dynamics is mostly decoupled and vastly different from the longitudinal one, hence the tomography of the transverse cross-section is expected to be very different from the longitudinal one
- With respect to the above points, in this talk we will argue heavy flavor tomography is expected to bring in new understanding that adds to the already established paradigm based on the light flavor tomography

Light flavor tomography

Light flavor tomography

no way to comprehend the 'most vortical fluid' without diagnosing the longitudinal profile

Karpenko, Becattini 2017

heavy flavor tomography

- distinct production mechanism: mainly produced in the initial state by hard binary collisions
- longer time to thermalize with the medium
- the above lead to heavy flavor as an invaluable probe for the tomography of the longitudinal cross-section
- In addition, also carries signature of specific early time physics, like those of the electromagnetic fields

entropy deposition in non-central collision

 $r_{1} < r_{2} \rightarrow \rho(r_{1}) > \rho(r_{2})$

entropy deposition in non-central collision

entropy deposition from participant sources

Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

Initial condition for a tilted fireball

$$\begin{split} s\left(\tau_{0}, x, y, \eta_{||}\right) &= s_{0}\left[\alpha N_{coll} + (1 - \alpha)\left(N_{part}^{+} f_{+}\left(\eta_{||}\right) + N_{part}^{-} f_{-}\left(\eta_{||}\right)\right)\right] f\left(\eta_{||}\right) \end{split}$$

$$f\left(\eta_{||}
ight) = \exp\left(- heta\left(|\eta_{||}| - \eta_{||}^{0}
ight)rac{\left(|\eta_{||}| - \eta_{||}^{0}
ight)^{2}}{2\sigma^{2}}
ight)$$

$$f_{+}\left(\eta_{||}\right) = \begin{cases} 0, & \eta_{||} < -\eta_{\mathcal{T}} \\ \frac{\eta_{\mathcal{T}} + \eta_{||}}{2\eta_{\mathcal{T}}}, & -\eta_{\mathcal{T}} \le \eta_{||} \le \eta_{\mathcal{T}} \\ 1, & \eta_{||} > \eta_{\mathcal{T}} \end{cases}$$

with $f_{-}\left(\eta_{||}\right)=f_{+}\left(-\eta_{||}\right)$ (rapidity-odd component)

Bożek, Wyskiel 2010

Tilted bulk \rightarrow directed fluid velocity

Tilted bulk \rightarrow directed fluid velocity

Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

from 1306.4145

Bulk directed flow

Tilted bulk \rightarrow directed fluid velocity \rightarrow charged particle v_1

Bożek, Wyskiel 2010

- Tilted IC captures the charged particle v₁
- small v₁

entropy depositing sources: participant vs binary collision sources

HQ from hard processes \rightarrow FB-symmetric Rapidity-even HQ dragged by Rapidity-odd bulk

from 1306.4145

Bulk vs heavy flavor

Heavy Quark Tomography

charm, anti-charm stronger probes of the tilt than the light flavor

entropy depositing sources: participant vs binary collision sources

from 1306.4145

 $v_1(HQ) > v_1(Bulk)$

to quantify the heavy flavor v_1

need to calibrate

- the tilt of the bulk: constrained by charged particle v₁, Bożek, Wyskiel 2010
- drag between the bulk and heavy flavor: constrained by heavy flavor R_{AA} and v_2 at mid-rapidity, we use an ansatz $\gamma = \gamma_0 T \left(\frac{T}{m}\right)^{\times}$

Calibrating the drag on HQs

SC, Bożek PRL, 120, 192301 (2017)

HQ $v_1 \mathcal{O}(10)$ larger !

predicted to be 5 - 20 times larger than charged particle v_1 slope !

SC, Bożek PRL, 120, 192301 (2017)

QM 2018: heavy flavor is pushed 30 times more than bulk !!

comparison to data

largest measured v_1 : order of magnitude larger than that of charged particle

SC, Bożek PRL, 120, 192301 (2017)

comparison to data

largest measured v_1 : order of magnitude larger than that of charged particle

NOTE: data with $p_T > 1.5$ GeV, similar cut in model will result in larger v_1

```
SC, Bożek PRL, 120, 192301 (2017)
```

Beam energy dependence

SC, Bożek 1804.04893

Ratio of HQ to bulk v_1

SC, Bożek 1804.04893

QM 2018: hint of split in v_1 of D^0 and $\overline{D^0}$

Subhash Singha, 😪 🐜

11

 v_1 split between positive and negative charged particles due to EM field

Gursoy, Kharzeev, Rajagopal 2014

EM field on HQ $v_1 \rightarrow \text{split}$ in v_1 of D^0 and $\overline{D^0}$

Das, Plumari, SC, Alam, Scardina, Greco 2016

 $\begin{array}{lll} v_1^{\mathsf{avg}} & = & \displaystyle \frac{1}{2} \left(v_1 \left(D^0 \right) + v_1 \left(\overline{D^0} \right) \right) \\ v_1^{\mathsf{diff}} & = & \displaystyle v_1 \left(D^0 \right) - v_1 \left(\bar{D^0} \right) \end{array}$

• Tilt: $v_1^{avg} \neq 0$, $v_1^{diff} = 0$; EM: $v_1^{avg} = 0$, $v_1^{diff} \neq 0$;

HQ v_1 with Tilt+EM field

•
$$v_1^{\text{avg}} \neq 0$$
, $v_1^{\text{diff}} \neq 0$
SC, Bożek 1804.04893

Summarising

- Heavy flavor tomography, mainly from the POV of the longitudinal structure was discussed
- Order of magnitude larger directed flow was predicted for heavy flavor compared to bulk.
- Early time EM field splits the v₁ of charm and anti-charm- a measure of the electric conductivity of the medium
- Comparison to STAR QM2018 data suggests preference for large tilt (effect of p_T cut is expected to allow for smaller tilt)
- Ratio of HQ to bulk v_1 is predicted to be larger at LHC than at RHIC- stronger drag due to higher temperature
- NOTE: ALICE has presented $D^0 v_1$ measurements at Hard Probes 2018 and the results are in contrary to STAR: avg. $v_1 \sim 0$ while non-zero & opposite sign Δv_1 indicating dominance of the *B* field. However, this data is with $p_T > 3$ GeV cut. A more elaborate systematic study is required to understand the data trends if they are to stay.