The QCD Equation of state at finite density from lattice

Sayantan Sharma

December 11, 2018
1. The QCD phase diagram: outstanding issues from lattice QCD

2. Equation of state at finite μ_B

3. Critical-end point search from lattice
Outline

1. The QCD phase diagram: outstanding issues from lattice QCD
2. Equation of state at finite μ_B
3. Critical-end point search from lattice
Perspectives from Lattice QCD

In view of the RHIC Beam Energy Scan-II in 2019-20, it is important to have control over the Equation of State for $\mu_B/T \leq 3$.

In view of the RHIC Beam Energy Scan-II in 2019-20 it is important to have control over the Equation of State for $\mu_B/T \leq 3$.

Measure the curvature of chiral and freezeout curves expected from QCD thermodynamics.
In view of the RHIC Beam Energy Scan-II in 2019-20 it is important to have control over the Equation of State for $\mu_B/T \leq 3$.

Measure the curvature of chiral and freezeout curves expected from QCD thermodynamics.

Look for possible existence and bracket the position of critical end-point in the phase diagram.
Lattice techniques at finite μ_B-l

- Conventional Monte-Carlo methods suffer from **sign problem** at finite μ_q.
- Two methods presently allow to go to thermodynamic and continuum limits.

[From arXiv:1811.02494]
Lattice techniques at finite μ_B-l

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q.
- Two methods presently allow to go to thermodynamic and continuum limits.

- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.

[From arXiv:1811.02494]
Lattice techniques at finite μ_B-I

- Conventional Monte-Carlo methods suffer from **sign problem** at finite μ_q.
- Two methods presently allow to go to thermodynamic and continuum limits.

For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.

$Z_{\text{QCD}}(\mu_q/T) = Z_{\text{QCD}}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n + 1)i\pi/3$.

[From arXiv:1811.02494]
Conventional Monte-Carlo methods suffer from sign problem at finite μ_q.

Two methods presently allow to go to thermodynamic and continuum limits.

For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.

$Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n + 1)i\pi/3$.

Calculate baryon no. density at several $\mu_q/T < i\pi/3$.

[From arXiv:1811.02494]
Lattice techniques at finite μ_B-I

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q.
- Two methods presently allow to go to thermodynamic and continuum limits.

- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.

$$Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3)$$
implies Roberge-Weiss end-points at $\mu_q/T = (2n + 1)i\pi/3$.

- Calculate baryon no. density at several $\mu_q/T < i\pi/3$.
- Fitting it to a polynomial in μ_q analytically continue in the real-μ plane.

[From arXiv:1811.02494]

[Diagram showing intermediate quark mass vs. temperature with transition points at RW trans. 1st order and Z(2) 2nd order (3d Ising) with crossover and TRW point.

Sayantan Sharma DAE-BRNS Symposium 2018, IIT Madras Slide 5 of 23]
Lattice techniques at finite μ_B-l

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q.
- Two methods presently allow to go to thermodynamic and continuum limits.

- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
 \[Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3) \]
 implies Roberge-Weiss end-points at $\mu_q/T = (2n + 1)i\pi/3$.
- Calculate baryon no. density at several $\mu_q/T < i\pi/3$.
- Fitting it to a polynomial in μ_q analytically continue in the real-μ plane.
- Limited due to discontinuities at Roberge-Weiss end-points!.

[From arXiv:1811.02494]
Lattice techniques at finite μ_B-II

- **Taylor expansion** of physical observables around $\mu = 0$ in powers of μ/T
 [Bi-Swansea collaboration, 02]

\[
\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \left(\frac{\mu_B}{T}\right)^2 \frac{\chi^B_2(0, T)}{2T^2} \chi^B_2(0, T) + \left(\frac{\mu_B}{T}\right)^4 \frac{\chi^B_4(0)}{4!} + \ldots
\]

- The series for $\chi^B_2(\mu_B)$ should diverge at the critical point. On finite lattice χ^B_2 peaks, ratios of Taylor coefficients equal, indep. of volume
 [Gavai & Gupta, 03]
Challenges for Taylor expansion

- The fluctuations of conserved charges can be expressed in terms of Quark number susceptibilities (QNS).
Challenges for Taylor expansion

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

Example:

$$\chi^u_{2} = \frac{T}{V} \langle Tr(D_u^{-1}D''_u - (D_u^{-1}D'_u)^2) + (Tr(D_u^{-1}D'_u))^2\rangle.$$ $$\chi^{us}_{11} = \frac{T}{V} \langle Tr(D_u^{-1}D'_u D_s^{-1}D'_s)\rangle.$$
Challenges for Taylor expansion

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

Example:

$$\chi_u^{us} = \frac{T}{V} \langle \text{Tr}(D_u^{-1} D'_u - (D_u^{-1} D'_u)^2) + (\text{Tr}(D_u^{-1} D'_u))^2 \rangle.$$

$$\chi_{11}^{us} = \frac{T}{V} \langle \text{Tr}(D_u^{-1} D'_u D_s^{-1} D'_s) \rangle.$$

- Higher derivatives \rightarrow more inversions
 - Inversion is the most expensive step on the lattice!
Challenges for Taylor expansion

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

Example:

$$\chi_2^u = \frac{T}{V} \langle Tr(D_{u}^{-1}D_u^{''} - (D_{u}^{-1}D_u')^2) + (Tr(D_{u}^{-1}D_u'))^2 \rangle.$$

$$\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_{u}^{-1}D_u'D_{s}^{-1}D_s') \rangle.$$

- Higher derivatives \rightarrow more inversions
 Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?
The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).

QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

Example:
\[
\chi^u_{2} = \frac{T}{V} \langle \text{Tr}(D_u^{-1}D_u'' - (D_u^{-1}D_u')^2) + (\text{Tr}(D_u^{-1}D_u'))^2 \rangle.
\]
\[
\chi^{us}_{11} = \frac{T}{V} \langle \text{Tr}(D_u^{-1}D_u'D_s^{-1}D_s') \rangle.
\]

Higher derivatives \rightarrow more inversions

Inversion is the most expensive step on the lattice!

Why extending to higher orders so difficult?

- Matrix inversions increasing with the order
Challenges for Taylor expansion

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator. Example:
 $$\chi_{2}^{u} = \frac{T}{V} \langle Tr(D_{u}^{-1} D_{u}'' - (D_{u}^{-1} D_{u}')^{2}) + (Tr(D_{u}^{-1} D_{u}'))^{2} \rangle.$$
 $$\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_{u}^{-1} D_{u}' D_{s}^{-1} D_{s}') \rangle.$$
- Higher derivatives \rightarrow more inversions
 Inversion is the most expensive step on the lattice!
- Why extending to higher orders so difficult?
 - Matrix inversions increasing with the order
 - Delicate cancellation between a large number of terms for higher order QNS.
Recent developments: A new method to introduce μ

- The staggered fermion matrix used at finite μ [Hasenfratz, Karsch, 83]

$$D(\mu)_{xy} = \sum_{i=1}^{3} \eta_i(x) \left[U_i^\dagger(y) \delta_{x,y+i} - U_i(x) \delta_{x,y-i} \right]$$

$$+ \eta_4(x) \left[e^{\mu a} U_4^\dagger(y) \delta_{x,y+\hat{4}} - e^{-\mu a} U_4(x) \delta_{x,y-\hat{4}} \right]$$
Recent developments: A new method to introduce μ

- The staggered fermion matrix used at finite μ [Hasenfratz, Karsch, 83]

$$D(\mu)_{xy} = \sum_{i=1}^{3} \eta_i(x) \left[U_i^\dagger(y) \delta_{x,y+i} - U_i(x) \delta_{x,y-i} \right]$$

$$+ \eta_4(x) \left[e^{\mu a} U_4^\dagger(y) \delta_{x,y+4} - e^{-\mu a} U_4(x) \delta_{x,y-4} \right]$$

- One can also add μ coupled to the conserved number density as in the continuum.

$$D(0)_{xy} - \frac{\mu a}{2} \eta_4(x) \left[U_4^\dagger(y) \delta_{x,y+4} + U_4(x) \delta_{x,y-4} \right]$$
Pros and Cons

- Linear method: \(D' = \sum_{x,y} N(x, y) \), and
 \(D'' = D''' = D'''' \ldots = 0 \)

 in contrast to the Exp-prescription, all derivatives are non-zero.
Pros and Cons

- **Linear method:**
 \[D' = \sum_{x,y} N(x,y), \text{ and} \]
 \[D'' = D''' = D'''' \ldots = 0 \]

 in contrast to the Exp-prescription, all derivatives are non-zero.

- No. of inversions significantly reduced for higher orders in linear method.

 For 8th order QNS the no. of matrix inversions reduced from 20 to 8
 for staggered fermions. [Gavai & Sharma, 12]
Pros and Cons

- Linear method: \(D' = \sum_{x,y} N(x,y) \), and \(D'' = D''' = D'''' = 0 \) in contrast to the Exp-prescription, all derivatives are non-zero.

- No. of inversions significantly reduced for higher orders in linear method.
 For 8th order QNS the no. of matrix inversions reduced from 20 to 8 for staggered fermions.
 [Gavai & Sharma, 12]

- Linear method: \(\chi_n \) have additional zero-\(T \) artifacts. \(\rightarrow \) explicit counter terms needed for \(\chi_{2,4} \), discussed in detail
 [Gavai & Sharma, 15]
Pros and Cons

- **Linear method:** $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D'''' = \cdots = 0$

 in contrast to the Exp-prescription, all derivatives are non-zero.

- No. of inversions significantly reduced for higher orders in linear method.

 For 8th order QNS the no. of matrix inversions reduced from 20 to 8 for staggered fermions.

 [Gavai & Sharma, 12]

- **Linear method:** χ_n have additional zero-T artifacts. \rightarrow explicit counter terms needed for $\chi_{2,4}$, discussed in detail

 [Gavai & Sharma, 15]

- **In Exp method:** counter terms already at the Lagrangian level. We use this method for χ_n^B, $n = 2, 4$.

 Sayantan Sharma
 DAE-BRNS Symposium 2018, IIT Madras
 Slide 9 of 23
Our Set-up

- $V = N^3 a^3$, Box size: $m_\pi V^{1/3} > 4$.
- $T = \frac{1}{N_\tau a}$

 We use $N_\tau = 6, 8, 12, 16$ lattices for $\chi_{2,4}$ and $N_\tau = 6, 8$ for higher order fluctuations.

- Input m_s physical and $m_\pi^G = 160$ MeV for $T > 175$ MeV and $m_\pi^G = 140$ MeV for $T \leq 175$ MeV.
1. The QCD phase diagram: outstanding issues from lattice QCD

2. Equation of state at finite μ_B

3. Critical-end point search from lattice
EoS in the constrained case

- In most central heavy-ion experiments typically:
 \[n_S = 0, \text{ Strangeness neutrality}, \]
 \[\frac{n_Q}{n_B} = \frac{n_P}{n_B+n_N} = 0.4. \]
 [Bi-BNL collaboration, 1208.1220]

- For lower \(\sqrt{s} \) collisions: Need to understand baryon stopping!
- Imposes non-trivial constraints on the variation of \(\mu_S \) and \(\mu_Q \).
- Possible to vary them by only varying \(\mu_B \) through

\[
\begin{align*}
\mu_S &= s_1 \mu_B + s_3 \mu_B^3 + s_5 \mu_B^5 + \ldots \\
\mu_Q &= q_1 \mu_B + q_3 \mu_B^3 + q_5 \mu_B^5 + \ldots
\end{align*}
\]
Central values of P_4, P_6 already deviate from Hadron Resonance gas model at $T > 145$ MeV \rightarrow need to analyze the errors on P_6 better.

P_6 has characteristic structure at $T > T_c$ \rightarrow remnant of the chiral symmetry due to the light quarks. Effects of $U_A(1)$ anomaly?

Essentially non-perturbative \rightarrow cannot be predicted within Hard Thermal Loop perturbation theory.
EoS in the constrained case

- The EoS is well under control for $\mu_B/T \sim 2.5$ with χ_6.
- Full parametric dependence for N_B on T available in arxiv: 1701.04325.
- Expanding to $\mu_B/T = 3$, need to calculate χ_8!
Summary for the EoS

- Continuum estimates from two different fermion discretization agree for \(\mu_B/T \leq 2 \).
 [Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494].

- Steeper EoS for RHIC energies compared to LHC energy.
\(\chi_6 \) contribution is 30-times larger than in pressure.

\[
\frac{N(\mu_B)}{T^3} = \frac{\mu_B}{T} \chi_2^B(0) + \frac{1}{2} \left(\frac{\mu_B}{T} \right)^4 \chi_4^B(0) + \frac{1}{4!} \left(\frac{\mu_B}{T} \right)^6 \chi_6^B(0) + ...
\]

Strongly sensitive to the singular part of \(\chi_6^B \).

For strangeness neutral system, effect is milder.
Can $T < T_c$ be described by Hadron Resonance Gas?

- Effects of interactions between hadrons can be mimicked by free gas of resonances + hadrons?
- Some baryon channels do not have resonances. \textit{In-medium modification of baryons}?
- Lattice data for higher order baryon no. fluc. are precise enough to distinguish between diff. scenarios → support additional resonances from quark-models + interactions

$$\chi^B_4$$

![Graph and Table Image]

[P. Huovinen, P. Petreczky, 1811.09330]
Can $T < T_c$ be described by Hadron Resonance Gas?

Including Van der Waal’s interaction for baryons + non-interacting mesons + resonances, new versions of HRG has been studied → significant deviation from non-interacting HRG.

Lattice data can constrain such models strongly! Currently none of these models are perfect to describe QCD at freezeout.

[F. Karsch, QM17 proceedings, 1706.01620]

[V. Vovchenko, M. I. Gorenstein and H. Stoecker 1609.03975]
1. The QCD phase diagram: outstanding issues from lattice QCD

2. Equation of state at finite μ_B

3. Critical-end point search from lattice
Curvature of the chiral crossover line

\[\frac{T_c(\mu X)}{T_c(0)} = 1 - \kappa_2^X \frac{\mu_X^2}{T_c(0)^2} - \kappa_4^X \frac{\mu_X^4}{T_c(0)^4} \]

For strangeness neutral system, continuum results available!
\(\kappa_2^B = 0.012(4) , \kappa_4^B \sim 0 \) with Taylor expansions and HISQ fermions.

[HotQCD collaboration, 1807.05607, and in prep.]
Curvature of the chiral crossover line

\[
\frac{T_c(\mu x)}{T_c(0)} = 1 - \kappa_2^X \frac{\mu^2}{T_c(0)^2} - \kappa_4^X \frac{\mu^4}{T_c(0)^4}
\]

Consistent with imaginary chemical potential method and stout fermions
\(\kappa_2^B = 0.0135(20)\) [C. Bonati et. al., 1805.02960]
removes earlier tension between two methods! [courtesy M. D’Elia Quark Matter 18]

Sayantan Sharma
DAE-BRNS Symposium 2018, IIT Madras
Slide 19 of 23
Curvature of freeze-out line vs chiral crossover line

- Different LCP’s agree within 2 MeV for $\mu_B/T \leq 2$ for 3 initial choices of T_0.
- For lines $P = \text{const}$, the entropy density changes by 15% \rightarrow better description of LCP for viscous medium formed in heavy-ion collisions.

[HotQCD collaboration, 1701.04325].

- STAR results give a steeper curvature.
 [arXiv:1412.0499].
- Agreement with the recent ALICE results. [arXiv:1408.6403].
- Consistent with phenomenological models. [Becattini et. al., 1605.09694].
The Taylor series for $\chi^B_2(\mu_B)$ should diverge at the critical point. On finite lattice χ^B_2 peaks, ratios of Taylor coefficients equal, indep. of volume.

The radius of convergence determines location of the critical point.

Definition: $r_{2n} \equiv \sqrt{2n(2n - 1) \left| \frac{\chi^B_{2n}}{\chi^B_{2n+2}} \right|}$.

- Strictly defined for $n \to \infty$. How large n could be on a finite lattice?
- Signal to noise ratio deteriorates for higher order χ^B_n.
Critical-end point search from Lattice

- Current bound for CEP: $\frac{\mu_B}{T} > 3$ for $142 \leq T \leq 150$ MeV
 [HotQCD coll., 1701.04325, update 2018].
- The r_n extracted by analytic continuation of imaginary μ_B data
 [D’Elia et. al., 1611.08285] consistent with this bound.
- Results with a lower bound? [Datta et. al., 1612.06673, Fodor and Katz, 04] → need to understand the systematics in these studies. Ultimately all estimates will agree in the continuum limit!

![Graph showing the critical-end point search from Lattice with various data points and estimates.](image-url)
Critical end-point and Chiral Crossover line: current status

Steeper curvature would imply slow convergence of r_n with order n
Critical end-point and Chiral Crossover line: current status

For current trends
\(\kappa_4 = \kappa_6 = \kappa_8 \ldots \sim 0 \),
radius of curvature estimates tell us
\(T_{CEP} \sim 0.92 T_c(0) \) and
\(\mu_B / T_{CEP} > 3 \).

Steeper curvature would imply slow convergence of \(r_n \) with order \(n \)
Critical end-point and Chiral Crossover line: current status

For current trends $\kappa_4 = \kappa_6 = \kappa_8 \ldots \sim 0$, radius of curvature estimates tell us $T_{CEP} \sim 0.92 T_c(0)$ and $\mu_B / T_{CEP} > 3$.

If $\kappa_4 \sim 0.1 \kappa_2$, only significantly contributes when $\mu_B / T_{CEP} > 3$ so its precise determination is imp.

Steeper curvature would imply slow convergence of r_n with order n
Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\frac{\mu_B}{T} \leq 2 \rightarrow \sqrt{s_{NN}} \geq 11$ GeV already under control with χ_6^B.
Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\frac{\mu_B}{T} \leq 2 \rightarrow \sqrt{s_{NN}} \geq 11$ GeV already under control with χ^B_6.

χ^B_8 is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\frac{\mu_B}{T} = 3$.
Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \leq 2 \rightarrow \sqrt{s_{NN}} \geq 11$ GeV already under control with χ_6^B.

χ_8^B is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B/T = 3$.

Lines of constant ϵ, p consistent with LQCD estimates of curvature of chiral crossover line.
Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B / T \leq 2 \rightarrow \sqrt{s_{NN}} \geq 11$ GeV already under control with χ^B_6.

χ^B_8 is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B / T = 3$.

Lines of constant ϵ, p consistent with LQCD estimates of curvature of chiral crossover line.

Higher order cumulants of baryon no. will also help in bracketing the possible CEP. Most LQCD calculations suggest $\mu_B(\text{CEP}) / T \geq 3$.