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Perspectives from Lattice QCD
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Perspectives from Lattice QCD

In view of the RHIC Beam
Energy Scan-II in 2019-20
it is important to have
control over the Equation
of State for µB/T ≤ 3.
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Perspectives from Lattice QCD

In view of the RHIC Beam
Energy Scan-II in 2019-20
it is important to have
control over the Equation
of State for µB/T ≤ 3.

Measure the curvature of
chiral and freezeout curves
expected from QCD
thermodynamics.

Look for possible existence
and bracket the position of
critical end-point in the
phase diagram.
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Lattice techniques at finite µB -I

Conventional Monte-Carlo methods suffer from sign problem at finite µq .

Two methods presently allow to go to thermodynamic and continuum limits.

[From arXiv:1811.02494]
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Conventional Monte-Carlo methods suffer from sign problem at finite µq .

Two methods presently allow to go to thermodynamic and continuum limits.

For imaginary µq the fermion determinant
real and positive → no sign-problem.

ZQCD(µq/T ) = ZQCD(µq/T + 2niπ/3)
implies Roberge-Weiss end-points at
µq/T = (2n+ 1)iπ/3.

Calculate baryon no. density at several
µq/T < iπ/3.

Fitting it to a polynomial in µq analytically
continue in the real-µ plane.

[From arXiv:1811.02494]

Limited due to discontinuities at Roberge-Weiss end-points!.
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Lattice techniques at finite µB -II

Taylor expansion of physical observables around µ = 0 in powers of
µ/T [Bi-Swansea collaboration, 02]

P(µB ,T )

T 4
=

P(0,T )

T 4
+

(µB

T

)2 χB
2 (0,T )

2T 2
+

(µB

T

)4 χB
4 (0)

4!
+ ...

P2 P4

The series for χB
2 (µB) should diverge at the critical point. On finite

lattice χB
2 peaks, ratios of Taylor coefficients equal, indep. of volume

[Gavai& Gupta, 03]
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Challenges for Taylor expansion

The fluctuations of conserved charges can be expressed in terms of Quark
no. susceptibilities (QNS).
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no. susceptibilities (QNS).

QNS χij ’s can be written as derivatives of the Dirac operator.
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2〉.

χus
11 =

T
V
〈Tr(D−1

u D
′

uD
−1
s D

′

s)〉.

Higher derivatives → more inversions
Inversion is the most expensive step on the lattice !

Why extending to higher orders so difficult?

• Matrix inversions increasing with the order
• Delicate cancellation between a large number of terms for higher order

QNS.
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Recent developments: A new method to introduce µ

The staggered fermion matrix used at finite µ [Hasenfratz, Karsch, 83]

D(µ)xy =
3

∑

i=1

ηi (x)
[

U
†
i (y)δx ,y+î

− Ui(x)δx ,y−î

]

+ η4(x)
[

e
µaU

†
4(y)δx ,y+4̂ − e

−µaU4(x)δx ,y−4̂

]
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Recent developments: A new method to introduce µ

The staggered fermion matrix used at finite µ [Hasenfratz, Karsch, 83]

D(µ)xy =
3

∑

i=1

ηi (x)
[

U
†
i (y)δx ,y+î

− Ui(x)δx ,y−î

]

+ η4(x)
[

e
µaU

†
4(y)δx ,y+4̂ − e

−µaU4(x)δx ,y−4̂

]

One can also add µ coupled to the conserved number density as in
the continuum.

D(0)xy −
µa

2
η4(x)

[

U
†
4(y)δx ,y+4̂ + U4(x)δx ,y−4̂

]

.

Sayantan Sharma DAE-BRNS Symposium 2018, IIT Madras Slide 8 of 23



Pros and Cons

Linear method: D ′ =
∑

x ,y N(x , y), and
D ′′ = D ′′′ = D ′′′′... = 0

in contrast to the Exp-prescription, all derivatives are non-zero.
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Linear method: D ′ =
∑

x ,y N(x , y), and
D ′′ = D ′′′ = D ′′′′... = 0

in contrast to the Exp-prescription, all derivatives are non-zero.

No. of inversions significantly reduced for higher orders in linear
method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8
for staggered fermions. [Gavai & Sharma, 12]

Linear method: χn have additional zero-T artifacts. → explicit
counter terms needed for χ2,4, discussed in detail [Gavai & Sharma, 15]

In Exp method: counter terms already at the Lagrangian level. We
use this method for χB

n , n = 2, 4.
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Our Set-up

V = N3a3 , Box size: mπ V 1/3 > 4.

T = 1
Nτa

We use Nτ = 6, 8, 12, 16 lattices for χ2,4 and Nτ = 6, 8 for higher order
fluctuations.

Input ms physical and mG
π = 160 MeV for T > 175 MeV and mG

π = 140
MeV for T <= 175 MeV.
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EoS in the constrained case

In most central heavy-ion experiments typically:
nS = 0 , Strangeness neutrality,
nQ
nB

= nP
nP+nN

= 0.4.
[Bi-BNL collaboration, 1208.1220]

For lower
√
s collisions: Need to understand baryon stopping!

Imposes non-trivial constraints on the variation of µS and µQ .
Possible to vary them by only varying µB through

µS = s1µB + s3µ
3
B + s5µ

5
B + ....

µQ = q1µB + q3µ
3
B + q5µ

5
B + ....
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Central values of P4,P6 already deviate from Hadron Resonance gas model
at T > 145 MeV → need to analyze the errors on P6 better.

P6 has characteristic structure at T > Tc → remnant of the chiral
symmetry due to the light quarks. Effects of UA(1) anomaly?

Essentially non-perturbative → cannot be predicted within Hard Thermal
Loop perturbation theory.
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EoS in the constrained case

The EoS is well under control for µB/T ∼ 2.5 with χ6.

Full parametric dependence for NB on T available in arxiv: 1701.04325.

Expanding to µB/T = 3, need to calculate χ8!
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Summary for the EoS

Continuum estimates from two different fermion discretization agree for
µB/T ≤ 2.
[Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494].

Steeper EoS for RHIC energies compared to LHC energy.

Sayantan Sharma DAE-BRNS Symposium 2018, IIT Madras Slide 15 of 23



Baryon number density

-0.00015

-0.0001

-5x10-5

 0

 5x10-5

 0.0001

 0.00015

 140  160  180  200  220  240  260  280

P
6

T[MeV]

HRG
cont. est.

Nτ= 8

6

-0.00015

-0.0001

-5x10-5

 0

 5x10-5

 0.0001

 0.00015

 140  160  180  200  220  240  260  280

ms/ml=20 (open)
27 (filled)

nS=0, nQ/nB=0.4

For strangeness neutral
system, effect is milder.

χ6 contribution is 30-times larger than in
pressure.

N(µB)

T 3
=

µB

T
χB
2 (0) +

1

2

(µB

T

)4

χB
4 (0)

+
1

4!

(µB

T

)6

χB
6 (0) + ...

Strongly sensitive to the singular part of χB
6 .
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Can T < Tc be described by Hadron Resonance Gas?

Effects of interactions between hadrons can be mimicked by free gas of
resonances+hadrons?
Some baryon channels do not have resonances. In-medium modification of
baryons?
Lattice data for higher order baryon no. fluc. are precise enough to
distinguish between diff. scenarios → support additional resonances from
quark-models+interactions

[P. Huovinen, P. Petreczky, 1811.09330]
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[F. Karsch, QM17 proceedings, 1706.01620]

Including Van der Waal’s interaction for baryons+non-interacting
mesons+resonances, new versions of HRG has been studied → significant
deviation from non-interacting HRG.
[V. Vovchenko, M. I. Gorenstein and H. Stoecker 1609.03975]

Lattice data can constrain such models strongly! Currently none of these
models are perfect to describe QCD at freezeout.
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Curvature of the chiral crossover line

Tc (µX )
Tc (0)

= 1− κX
2

µ2
X

Tc (0)2
− κX

4
µ4
X

Tc (0)4

For strangess neutral system, continuum results available!
κB
2 = 0.012(4) , κB

4 ∼ 0 with Taylor expansions and HISQ fermions.
[HotQCD collaboration, 1807.05607, and in prep.]
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Curvature of the chiral crossover line

Tc (µX )
Tc (0)

= 1− κX
2

µ2
X

Tc (0)2
− κX

4
µ4
X

Tc (0)4

Consistent with imaginary chemical potential method and stout fermions
κB
2 = 0.0135(20) [C. Bonati et. al., 1805.02960]

removes earlier tension between two methods! [courtesy M. D’Elia Quark Matter 18]
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hotQCD @ QM2018
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Curvature of freeze-out line vs chiral crossover line

Different LCP’s agree within 2 MeV for µB/T ≤ 2 for 3 initial choices of T0.

For lines P = const, the entropy density changes by 15% → better
description of LCP for viscous medium formed in heavy-ion collisions.
[HotQCD collaboration, 1701.04325].

STAR results give a steeper curvature.
[arXiv:1412.0499].

Agreement with the recent ALICE
results. [arXiv:1408.6403].

Consistent with phenomenological
models. [Becattini et. al., 1605.09694].
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Critical-end point search from Lattice

The Taylor series for χB
2 (µB) should diverge at the critical point. On

finite lattice χB
2 peaks, ratios of Taylor coefficients equal, indep. of

volume.

The radius of convergence determines location of the critical point.
[Gavai& Gupta, 03]

Definition: r2n ≡
√

2n(2n − 1)
∣

∣

∣

χB
2n

χB
2n+2

∣

∣

∣
.

• Strictly defined for n → ∞. How large n could be on a finite lattice?
• Signal to noise ratio deteriorates for higher order χB

n .
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Critical-end point search from Lattice

Current bound for CEP: µB/T > 3 for 142 ≤ T ≤ 150 MeV
[HotQCD coll., 1701.04325, update 2018].
The rn extracted by analytic continuation of imaginary µB data
[ D’Elia et. al., 1611.08285 ] consistent with this bound.
Results with a lower bound? [Datta et. al., 1612.06673, Fodor and Katz, 04] → need to
understand the systematics in these studies. Ultimately all estimates will
agree in the continuum limit!
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Critical end-point and Chiral Crossover line: current status

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3

T
c
(µ

B
)/

T
c
(0

)

µB/Tc(0)

Crossover line, HotQCD, 2018, O(µB
4
)

1805.02960, O(µB
2
)
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Steeper curvature would imply slow convergence of rn with order n
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For current trends
κ4 = κ6 = κ8... ∼ 0,
radius of curvature
estimates tell us
TCEP ∼ 0.92Tc(0) and
µB/TCEP > 3.

Steeper curvature would imply slow convergence of rn with order n
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For current trends
κ4 = κ6 = κ8... ∼ 0,
radius of curvature
estimates tell us
TCEP ∼ 0.92Tc(0) and
µB/TCEP > 3.

If κ4 ∼ 0.1κ2, only
significantly contributes
when µB/TCEP > 3 so its
precise determination is
imp.

Steeper curvature would imply slow convergence of rn with order n
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Outlook

Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For µB/T ≤ 2 → √

sNN ≥ 11 GeV already under control with χB
6 .
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Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For µB/T ≤ 2 → √

sNN ≥ 11 GeV already under control with χB
6 .

χB
8 is important to estimate the errors on the EoS measured with the sixth

order cumulants and going towards µB/T = 3.
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of QGP. For µB/T ≤ 2 → √

sNN ≥ 11 GeV already under control with χB
6 .

χB
8 is important to estimate the errors on the EoS measured with the sixth

order cumulants and going towards µB/T = 3.

Lines of constant ǫ, p consistent with LQCD estimates of curvature of chiral
crossover line.
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Outlook

Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For µB/T ≤ 2 → √

sNN ≥ 11 GeV already under control with χB
6 .

χB
8 is important to estimate the errors on the EoS measured with the sixth

order cumulants and going towards µB/T = 3.

Lines of constant ǫ, p consistent with LQCD estimates of curvature of chiral
crossover line.

Higher order cumulants of baryon no. will also help in bracketing the
possible CEP. Most LQCD calculations suggest µB(CEP)/T ≥ 3.
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