The QCD Equation of state at finite density from lattice

Sayantan Sharma

4 0 8

 QQ

1 [The QCD phase diagram: outstanding issues from lattice QCD](#page-2-0)

2 [Equation of state at finite](#page-27-0) μ_B

ALCOHOL:

 QQ

1 [The QCD phase diagram: outstanding issues from lattice QCD](#page-2-0)

[Equation of state at finite](#page-27-0) μ_B

[Critical-end point search from lattice](#page-35-0)

 \Rightarrow

 QQ

 \leftarrow \Box \rightarrow

Sayantan Sharma [DAE-BRNS Symposium 2018, IIT Madras](#page-0-0) Sharman Matthews Slide 4 of 23

• In view of the RHIC Beam Energy Scan-II in 2019-20 it is important to have control over the Equation of State for $\mu_B / T \leq 3$.

- **•** In view of the RHIC Beam Energy Scan-II in 2019-20 it is important to have control over the Equation of State for $\mu_B / T \leq 3$.
- **Measure the curvature of** chiral and freezeout curves expected from QCD thermodynamics.

- **•** In view of the RHIC Beam Energy Scan-II in 2019-20 it is important to have control over the Equation of State for $\mu_B/T \leq 3$.
- **Measure the curvature of** chiral and freezeout curves expected from QCD thermodynamics.
- **•** Look for possible existence and bracket the position of critical end-point in the phase diagram.

- **• Conventional Monte-Carlo methods suffer from sign problem at finite** μ_a **.**
- Two methods presently allow to go to thermodynamic and continuum limits.

- **Conventional Monte-Carlo methods suffer from sign problem at finite** μ_{q} **.**
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.

つへへ

- \bullet Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- \bullet $\mathcal{Z}_{QCD}(\mu_q/T) = \mathcal{Z}_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.

つへへ

- \bullet Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- \bullet $\mathcal{Z}_{QCD}(\mu_q/T) = \mathcal{Z}_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.
- **•** Calculate baryon no. density at several $\mu_{q}/T < i\pi/3$.

つへへ

医尿囊的

- \bullet Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- \bullet $\mathcal{Z}_{QCD}(\mu_q/T) = \mathcal{Z}_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.
- **•** Calculate baryon no. density at several $\mu_{q}/T < i\pi/3$.
- Fitting it to a polynomial in μ_q analytically continue in the real- μ plane.

K ロ ▶ | K 何 ▶ | K 日

つへへ

医尿囊的

- \bullet Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- \bullet $\mathcal{Z}_{QCD}(\mu_q/T) = \mathcal{Z}_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.
- **•** Calculate baryon no. density at several $\mu_{q}/T < i\pi/3$.
- Fitting it to a polynomial in μ_q analytically continue in the real- μ plane.

←ロト ←何ト ←ヨト ←ヨトー

Limited due to discontinuities at Roberge-Weiss end-points!.

つへへ

• Taylor expansion of physical observables around $\mu = 0$ in powers of μ/T [Bi-Swansea collaboration, 02]

$$
\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \left(\frac{\mu_B}{T}\right)^2 \frac{\chi_2^B(0, T)}{2T^2} + \left(\frac{\mu_B}{T}\right)^4 \frac{\chi_4^B(0)}{4!} + \dots
$$

\n
$$
P_2
$$

The series for $\chi_2^B(\mu_B)$ should diverge at the critical point. On finite lattice χ_2^B peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai& Gupta, 03]

化重新分

The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).

 QQ

 \leftarrow \Box \rightarrow

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ii} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u'' - (D_u^{-1}D_u')$ $(v_u^{'})^2$) + (Tr($D_u^{-1}D_u^{'}$ $\binom{1}{u}$ $)^2$. $\chi_{11}^{us} = \frac{7}{V} \langle Tr(D_u^{-1}D_u'D_s^{-1}D_s'$ $\langle \, , \rangle \rangle$.

- **•** The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ii} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u'' - (D_u^{-1}D_u')$ $(v_u^{'})^2$) + (Tr($D_u^{-1}D_u^{'}$ $\binom{1}{u}$ $)^2$. $\chi_{11}^{us} = \frac{7}{V} \langle Tr(D_u^{-1}D_u'D_s^{-1}D_s'$ $\langle \, , \rangle \rangle$.

 \bullet Higher derivatives \rightarrow more inversions Inversion is the most expensive step on the lattice !

- **•** The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ii} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u'' - (D_u^{-1}D_u')$ $(v_u^{'})^2$) + (Tr($D_u^{-1}D_u^{'}$ $\binom{1}{u}$ $)^2$. $\chi_{11}^{us} = \frac{7}{V} \langle Tr(D_u^{-1}D_u'D_s^{-1}D_s'$ $\langle \, , \rangle \rangle$.

- \bullet Higher derivatives \rightarrow more inversions Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?

 209

- **•** The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ii} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u'' - (D_u^{-1}D_u')$ $(v_u^{'})^2$) + (Tr($D_u^{-1}D_u^{'}$ $\binom{1}{u}$ $)^2$. $\chi_{11}^{us} = \frac{7}{V} \langle Tr(D_u^{-1}D_u'D_s^{-1}D_s'$ $\langle \, , \rangle \rangle$.

- \bullet Higher derivatives \rightarrow more inversions Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?
	- Matrix inversions increasing with the order

- **•** The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ii} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u'' - (D_u^{-1}D_u')$ $(v_u^{'})^2$) + (Tr($D_u^{-1}D_u^{'}$ $\binom{1}{u}$ $)^2$. $\chi_{11}^{us} = \frac{7}{V} \langle Tr(D_u^{-1}D_u'D_s^{-1}D_s'$ $\langle \, , \rangle \rangle$.

- \bullet Higher derivatives \rightarrow more inversions Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?
	- Matrix inversions increasing with the order
	- Delicate cancellation between a large number of terms for higher order QNS.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 &$

Recent developments: A new method to introduce μ

• The staggered fermion matrix used at finite μ [Hasenfratz, Karsch, 83]

$$
D(\mu)_{xy} = \sum_{i=1}^{3} \eta_i(x) \left[U_i^{\dagger}(y) \delta_{x,y+\hat{i}} - U_i(x) \delta_{x,y-\hat{i}} \right] + \eta_4(x) \left[e^{\mu a} U_4^{\dagger}(y) \delta_{x,y+\hat{a}} - e^{-\mu a} U_4(x) \delta_{x,y-\hat{a}} \right]
$$

 \leftarrow \Box \rightarrow

 \Rightarrow

 299

Recent developments: A new method to introduce μ

• The staggered fermion matrix used at finite μ [Hasenfratz, Karsch, 83]

$$
D(\mu)_{xy} = \sum_{i=1}^{3} \eta_i(x) \left[U_i^{\dagger}(y) \delta_{x,y+\hat{i}} - U_i(x) \delta_{x,y-\hat{i}} \right] + \eta_4(x) \left[e^{\mu a} U_4^{\dagger}(y) \delta_{x,y+\hat{a}} - e^{-\mu a} U_4(x) \delta_{x,y-\hat{a}} \right]
$$

 \bullet One can also add μ coupled to the conserved number density as in the continuum.

$$
D(0)_{xy}-\frac{\mu a}{2}\eta_4(x)\Big[U_4^{\dagger}(y)\delta_{x,y+\hat{a}}+U_4(x)\delta_{x,y-\hat{a}}\Big].
$$

4 国 ドー

 QQ

Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''''... = 0$

in contrast to the Exp-prescription, all derivatives are non-zero.

 2990

イロト イ押 トイヨ トイヨ トー

Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''''... = 0$

in contrast to the Exp-prescription, all derivatives are non-zero.

No. of inversions significantly reduced for higher orders in linear method.

For 8th order QNS the no. of matrix inversions reduced from 20 to 8 for staggered fermions. [Gavai & Sharma, 12]

Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''''... = 0$

in contrast to the Exp-prescription, all derivatives are non-zero.

No. of inversions significantly reduced for higher orders in linear method.

For 8th order QNS the no. of matrix inversions reduced from 20 to 8 for staggered fermions. [Gavai & Sharma, 12]

• Linear method: χ_n have additional zero-T artifacts. \rightarrow explicit counter terms needed for $\chi_{2,4}$, discussed in detail [Gavai & Sharma, 15]

 209

제국 시도 국

Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''''... = 0$

in contrast to the Exp-prescription, all derivatives are non-zero.

No. of inversions significantly reduced for higher orders in linear method.

For 8th order QNS the no. of matrix inversions reduced from 20 to 8 for staggered fermions. [Gavai & Sharma, 12]

- Linear method: χ_n have additional zero-T artifacts. \rightarrow explicit counter terms needed for $\chi_{2,4}$, discussed in detail [Gavai & Sharma, 15]
- In Exp method: counter terms already at the Lagrangian level. We use this method for χ_n^B , $n = 2, 4$.

 Ω

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Our Set-up

- $V = N^3 a^3$, Box size: $m_{\pi} V^{1/3} > 4$.
- $T = \frac{1}{N_\tau a}$ We use $N_{\tau} = 6, 8, 12, 16$ lattices for $\chi_{2,4}$ and $N_{\tau} = 6, 8$ for higher order fluctuations.
- Input m_s physical and $m_\pi^G=160$ MeV for $T>175$ MeV and $m_\pi^G=140$ MeV for $T \leq 175$ MeV.

1 [The QCD phase diagram: outstanding issues from lattice QCD](#page-2-0)

[Critical-end point search from lattice](#page-35-0)

 $\leftarrow \equiv$

 QQ

 \leftarrow \Box

EoS in the constrained case

• In most central heavy-ion experiments typically:

 $n_S = 0$, Strangeness neutrality, n^Q $\frac{n_Q}{n_B} = \frac{n_P}{n_P +}$ $\frac{np}{np + n_N} = 0.4.$ [Bi-BNL collaboration, 1208.1220]

- For lower \sqrt{s} collisions: Need to understand baryon stopping!
- Imposes non-trivial constraints on the variation of μ_S and μ_Q . \bullet
- Possible to vary them by only varying μ_B through

$$
\mu_S = s_1 \mu_B + s_3 \mu_B^3 + s_5 \mu_B^5 + \dots
$$

$$
\mu_Q = q_1 \mu_B + q_3 \mu_B^3 + q_5 \mu_B^5 + \dots
$$

Sayantan Sharma Barma [DAE-BRNS Symposium 2018, IIT Madras](#page-0-0) Share Slide 12 of 23

- \bullet Central values of P_4 , P_6 already deviate from Hadron Resonance gas model at $T > 145$ MeV \rightarrow need to analyze the errors on P_6 better.
- P_6 has characteristic structure at $T > T_c \rightarrow$ remnant of the chiral symmetry due to the light quarks. Effects of $U_A(1)$ anomaly?
- \bullet Essentially non-perturbative \rightarrow cannot be predicted within Hard Thermal Loop perturbation theory.

 209

Ε

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ..

EoS in the constrained case

- **•** The EoS is well under control for $\mu_B / T \sim 2.5$ with χ_6 .
- Full parametric dependence for N_B on T available in arxiv: 1701.04325. \bullet
- Expanding to $\mu_B/T = 3$, need to calculate $\chi_8!$ \bullet

◆ ロ ▶ → 何

 \Rightarrow ∍ QQ

Summary for the EoS

Continuum estimates from two different fermion discretization agree for $\mu_B/T \leq 2$.

[Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494].

• Steeper EoS for RHIC energies compared to LHC energy.

and the first

Baryon number density

 \bullet χ_6 contribution is 30-times larger than in pressure.

$$
\frac{N(\mu_B)}{\mathcal{T}^3} = \frac{\mu_B}{\mathcal{T}} \chi_2^B(0) + \frac{1}{2} \left(\frac{\mu_B}{\mathcal{T}}\right)^4 \chi_4^B(0) + \frac{1}{4!} \left(\frac{\mu_B}{\mathcal{T}}\right)^6 \chi_6^B(0) + ...
$$

Strongly sensitive to the singular part of χ_6^B . \bullet

• For strangeness neutral system, effect is milder.

140 160 180 200 220 240 260 280

 $\overline{\text{max}}$

-0.00015

Sayantan Sharma [DAE-BRNS Symposium 2018, IIT Madras](#page-0-0) Slide 16 of 23

 QQ

Can $T < T_c$ be described by Hadron Resonance Gas?

- Effects of interactions between hadrons can be mimicked by free gas of resonances+hadrons?
- **Some baryon channels do not have resonances. In-medium modification of** baryons?
- Lattice data for higher order baryon no. fluc. are precise enough to distinguish between diff. scenarios \rightarrow support additional resonances from quark-models+interactions

[P. Huovinen, P. Petreczky, 1811.0933[0\]](#page-32-0)

Can $T < T_c$ be described by Hadron Resonance Gas?

[F. Karsch, QM17 proceedings, 1706.01620]

Including Van der Waal's interaction for baryons+non-interacting mesons+resonances, new versions of HRG has been studied \rightarrow significant deviation from non-interacting HRG.

[V. Vovchenko, M. I. Gorenstein and H. Stoecker 1609.03975]

Lattice data can constrain such models strongly! Currently none of these models are perfect to describe QCD at freezeout.

 Ω

∍

 \rightarrow \rightarrow \equiv \rightarrow

K ロ ▶ | K 何 ▶ | K 日

1 [The QCD phase diagram: outstanding issues from lattice QCD](#page-2-0)

[Equation of state at finite](#page-27-0) μ_B

 $\leftarrow \equiv$

 QQ

 \leftarrow \Box

Curvature of the chiral crossover line

$$
\bullet \ \frac{\tau_c(\mu_X)}{\tau_c(0)} = 1 - \kappa_2^X \frac{\mu_X^2}{\tau_c(0)^2} - \kappa_4^X \frac{\mu_X^4}{\tau_c(0)^4}
$$

For strangess neutral system, continuum results available! $\kappa_2^B = 0.012(4)$, $\kappa_4^B \sim 0$ with Taylor expansions and HISQ fermions. [HotQCD collaboration, 1807.05607, and in prep.]

Curvature of the chiral crossover line

$$
\bullet \ \frac{\tau_c(\mu_X)}{\tau_c(0)} = 1 - \kappa_2^X \frac{\mu_X^2}{\tau_c(0)^2} - \kappa_4^X \frac{\mu_X^4}{\tau_c(0)^4}
$$

- Consistent with imaginary chemical potential method and stout fermions $\kappa_2^B = 0.0135(20)$ [C. Bonati et. al., 1805.02960]
- **•** removes earlier tension between two methods! [courtesy M. D'Elia Quark Matter 18]

 QQ

Curvature of freeze-out line vs chiral crossover line

- Different LCP's agree within 2 MeV for $\mu_B/T \le 2$ for 3 initial choices of T_0 . \bullet
- For lines $P =$ const, the entropy density changes by $15\% \rightarrow$ better description of LCP for viscous medium formed in heavy-ion collisions. [HotQCD collaboration, 1701.04325].

- STAR results give a steeper curvature. [arXiv:1412.0499].
- Agreement with the recent ALICE results. [arXiv:1408.6403].
- Consistent with phenomenological models. [Becattini et. al., 1605.09694].

- The Taylor series for $\chi_2^B(\mu_B)$ should diverge at the critical point. On finite lattice $\chi_2^{\mathcal{B}}$ peaks, ratios of Taylor coefficients equal, indep. of volume.
- The radius of convergence determines location of the critical point. [Gavai& Gupta, 03]
- Definition: $r_{2n} \equiv \sqrt{2n(2n-1)}$ $\frac{\chi^B_{2n}}{\chi^B_{2n+2}}$   .
	- Strictly defined for $n \to \infty$. How large *n* could be on a finite lattice?
	- Signal to noise ratio deteriorates for higher order χ^B_n .

Critical-end point search from Lattice

- Current bound for CEP: $\mu_B/T > 3$ for $142 \leq T \leq 150$ MeV [HotQCD coll., 1701.04325, update 2018].
- The r_n extracted by analytic continuation of imaginary μ_B data \bullet [D'Elia et. al., 1611.08285] consistent with this bound.
- **Results with a lower bound?** [Datta et. al., 1612.06673, Fodor and Katz, 04] \rightarrow need to understand the systematics in these studies. Ultimately all estimates will agree in the continuum limit!

 Ω

 \Rightarrow Ε

Critical end-point and Chiral Crossover line: current status

Steeper curvature would imply slow convergence of r_n with order n

 QQ

Critical end-point and Chiral Crossover line: current status

• For current trends $\kappa_4 = \kappa_6 = \kappa_8 ... \sim 0$ radius of curvature estimates tell us $T_{CEP} \sim 0.92 T_c(0)$ and $\mu_B/T_{CEP} > 3$.

Steeper curvature would imply slow convergence of r_n with order n

つへへ

Critical end-point and Chiral Crossover line: current status

- **•** For current trends $\kappa_4 = \kappa_6 = \kappa_8 ... \sim 0$ radius of curvature estimates tell us $T_{CEP} \sim 0.92 T_c(0)$ and $\mu_B / T_{CEP} > 3$.
- **If** $\kappa_4 \sim 0.1\kappa_2$, only significantly contributes when $\mu_B / T_{CEP} > 3$ so its precise determination is imp.

Steeper curvature would imply slow convergence of r_n with order n

つへへ

Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \leq 2 \rightarrow \sqrt{s}_{NN} \geq 11$ GeV already under control with χ_6^B .

あえ 国家 し

K ロ ▶ K 何 ▶ K

 2990

- Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \leq 2 \rightarrow \sqrt{s}_{NN} \geq 11$ GeV already under control with χ_6^B .
- χ_{8}^{B} is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B / T = 3$.

 2990

 \mathbf{y} , and \mathbf{y} is \mathbf{y} .

≮ロ ▶ ≮ 何 ▶ ₹

- Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \leq 2 \rightarrow \sqrt{s}_{NN} \geq 11$ GeV already under control with χ_6^B .
- χ_{8}^{B} is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B / T = 3$.
- \bullet Lines of constant ϵ , p consistent with LQCD estimates of curvature of chiral crossover line.

 Ω

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

- Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \leq 2 \rightarrow \sqrt{s}_{NN} \geq 11$ GeV already under control with χ_6^B .
- χ_{8}^{B} is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B / T = 3$.
- **I** Lines of constant ϵ , p consistent with LQCD estimates of curvature of chiral crossover line.
- **•** Higher order cumulants of baryon no. will also help in bracketing the possible CEP. Most LQCD calculations suggest μ_B (CEP)/T \geq 3.

KED KAP KED KED E VAA