Towards a 4th dimensional tracker system

XXIII DAE-BRNS High Energy Physics Symposium, Chennai, IITM, Dec 10th, 2018

Iván Vila Álvarez
Instituto de Física de Cantabria (CSIC-UC)
Outline

- **Introduction, Motivation & challenges for a 4th dimensional tracker system:**
 - Timing detectors in current and recent experiments.
 - The NA62 Gigatracker: a stepping stone towards a true 4th dimensional tracking.
 - Timing layers and particle-flow calorimeters at HL-LHC
 - Timing at the Future Circular Collider.

- **Sensors for timing 101:**
 - timing basics Silicon
 - Silicon diode detectors cases of use.

- **Inverse-Low Gain Avalanche Detectors (ILGAD): A sensor for a large-scale high-precision 4th dimensional tracker system.**
 - Technology description.
 - Performance of proof-of-concept prototype
Timing detectors: the recent past (1)

- Precise time stamping of charged particles ($\Delta t \geq 100$ ps) by dedicated Time-of-Flight (ToF) detectors.
- **Particle ID** of low momentum charged particles (mostly pion/kaon disentangling in flavor physics experiments)
- ToF detector determines speed of a charged particle by measuring flight time t across a known distance L. Knowing the particle momentum p, one determines the mass.

$$m = \frac{p}{c} \sqrt{\frac{c^2 t^2}{L^2}} - 1$$

Mass vs momentum

CDF-II ToF detector at Tevatron
Timing detectors: the recent past (2)

- Fast detection sensing technologies:
 - Fast scintillators + conventional Photomultiplier Tubes
 - Resistive Plate Chambers (very large area detectors).
- Limitations:
 - Difficult to go below 100 ps timing resolution, severe gain reduction inside magnetic fields (PMT), bulky, scintillator and gaz radiation-induced aging, limited granularity (spatial resolution).

CDF & Belle ToF Detectors
Overall Time resolution
~ 100 ps

ALICE ToF detector
Overall time resolution
~ 120 ps
GigaTracker: A true 4th dimensional tracker

- Aim to measure $\text{Br}(K^+ \pi^+ \nu \nu)$ SM branching fraction very small $\sim 10^{-10}$
- Unstructured particle beam with ~ 5 second burst every ~ 42 seconds (instantaneous rate 750 MHz)

Hybrid pixel detector:
- 300 um \times 300 um pixels
- One sensor ($\sim 6 \times 3 \text{ cm}^2$) bump-bonded to 10 read-out chips
Motivation: Why do we need precise time stamping of particles? (1)

- Future hadronic colliders (HL-LHC, FCC) to increase many fold the current LHC luminosity: track multiplicity and bias events

Thousands of tracks, vertices, calorimeter clusters that must be disentangled and accurately determined
Motivation: Why do we need precise time stamping of particles? (2)

- Profit from primary vertices' time spread.

- With a time spread ~ 200ps then 20-30 ps of PV timing resolution is required to disentangle the different primary vertices.
Motivation: Why do we need precise time stamping of particles? (3)

- Suppression of mismatched PU tracks, Jet pileup and improved of track isolation.
Sensors for timing: Basics
Here focus on sensor’s contribution: dominated by jitter and time walk (pulse amplitude and leading edge distortion)

\[\sigma_t = \frac{\sigma_V}{dV/dt} \quad \frac{dV}{dt} \approx \frac{V}{t_r} \quad \Rightarrow \quad \sigma_t = \frac{t_r}{SNR} \]

Rise time limited by bandwidth (partially due to sensor’s capacitance)

I. Vila DAE HEP Symposium 2018, IITM, Chena, Dec 2018
Silicon-based sensors timing

- Silicon-based diodes provide both fast rise time and relative large signal/noise ratio.
- Three operating modes: no signal gain (PIN), proportional (APD) and Geiger mode (SiPMT).

\[1\] A.G. Stewart et al. in Proc. of SPIE, Vol. 6119, 2006
Timing with PIN diodes : CMS HGCAL as case of use

- Very reliable and mature mass production technology
- Main limitation: low SNR

Scintillator + SiPM

PIN SILICON DIODES,
active thickness 300, 200, 100 µm

PIN SILICON DIODES,
active thickness 300, 200, 100 µm
Avalanche mode diode (Low Gain Avalanche Detector - LGAD): Case of use ETL at CMS

- Main advantage: custom SNR for optimal for timing and tracking
- Main limitation: moderated radiation tolerance and yet to demonstrate as mass-scale production technology.
Silicon Photomultipliers: (Geiger-mode APD)

Case of use: BTL detector at CMS

- Mature technology, mass produced and cheap sensing element.
- Main limitation: moderate radiation tolerance < $2 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$ and concept with intrinsic poor spatial resolution.
Silicon–based timing: Performance Comparison

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>RISE – TIME (DRIVEN BY CAPACITANCE)</th>
<th>SNR</th>
<th>RADIATION TOLERANCE</th>
<th>MASS PRODUCTION (AFFORADABLE)</th>
<th>DRIVING LIMITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN (NO GAIN)</td>
<td>FAST < 1ns</td>
<td>LOW</td>
<td>HIGH</td>
<td>POSSIBLE</td>
<td>LOW SIGNAL</td>
</tr>
<tr>
<td>LGAD (PROPORTIONAL GAIN)</td>
<td>FAST <1ns</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>POSSIBLE TO BE DEMONSTRATED</td>
<td>RADIATION TOLERANCE</td>
</tr>
<tr>
<td>SIPM (GEIGER MODE)</td>
<td>FAST <1ns</td>
<td>VERY HIGH</td>
<td>MEDIUM</td>
<td>POSSIBLE</td>
<td>RADIATION TOLERANCE & POOR SPATIAL RESOLUTION</td>
</tr>
</tbody>
</table>
Inverse-Low Gain Avalanche Detector
a full fledged 4th dimensional sensor
I-LGAD basics: a 4th dimensional tracking sensor

Multiplication layer divided into strip
Collects negative carriers (e)
Simple single side process

Multiplication layer extended over the electrode
Collects positive carriers (h)
Complex double side process

LGAD
N on P microStrip

P on P microStrip
iLGAD

![Diagram](image)

- **Passivation**
- **Aluminum**
- **N+ Cathode**
- **P-Stop**
- **P-Multiplication**
I-LGAD basics: multiplication footprint

- Distinct signature of signal amplification: cathode illumination with red laser
- Injections of electron into the cathode, resulting transient current is a sequential contribution of primary electrons reaching the amplification layer and secondary holes drifting towards the anode.
Gain Spatial Uniformity: the fill factor issue

- Conventional LGAD: multiplication layer interspace presents reduced/suppressed gain.

Back-side red laser scanning transversal to the strip direction

Signal depts between the Strips (no multiplication layer)

- I-LGAD: non-segmented multiplication layer should present uniform gain.
Gain Spatial Uniformity: Validation with MIPs

Strip LGAD

I-LGAD
(8533W1K05T, 45 strips 160 um, non-irradiated)
Gain Spatial Uniformity: Collected Charge

LGAD

Peak 1: 24 Kelectrons
Peak 2: 65 Kelectrons

i-LGAD

Peak: 76 Kelectrons

Standard PIN

Peak: 24 Kelectrons
Gain Spatial Uniformity: Gain vs. Hit position (1)

- Dependence of the Signal-to-Noise Ratio with the “fractional position” χ_η for cluster of size two.

$$\frac{dN}{d\eta}, \quad \eta \equiv \frac{Q_{Right}}{Q_{Left} + Q_{Right}}$$

$$x(\eta) = \frac{1}{N_0} \int_0^\eta \frac{dN}{d\eta} d\eta$$

Standard Strip sensor
- Uniform SNR ratio over the strip width

Artifact (selection algorithm, Cluster size two close to the edges)

![SNR vs. fractional position graph](image)
Gain Spatial Uniformity: Gain vs. Hit position (2)

LGAD Strip

Artifact due to front-end saturation

100 Volt bias

400 Volt bias

<i-LGAD Strip

<SNR> \sim 30

<SNR> \sim 43
Tracking performance: Reference strip sensor

- Challenges:
 - Difficult synchronization between Alibaba daq (x3) and Eudaq.
 - Saturation of the Alibaba ADC.
Tracking performance: I-LGAD strip sensor

- Hit resolution biased by saturation of the Alibava ADC?
Set-up for timing characterization and DUT

- **Time standard**: constant time interval between two picosecond IR laser pulses (1060 nm)
- **Fixed time interval**: between laser pulses generated by optical splitting and delayed recombination of a single laser pulse.
Set-up for timing characterization and DUT (2)

- Signal amplified (60db, miteq 1660) & digitized (20Gs)
- Acquired averaged waveform from I-LGAD with a time interval of 52.23 ns between pulses.
Parameter extraction of the waveform.

- Single-shot (non-averaged) superposition of signals
- For each shot measured: Rise time, Signal amplitude and noise.
- **Signal estimation** as the charge under the transient waveform
- **Noise estimation** as the RMS of charge (from the first 20ns of the waveform)

\[\sigma \equiv \text{RMS (Charge baseline)} \]

\[\text{SNR} \equiv \frac{\text{Signal Charge}}{\sigma} \]

Range for computing the pulse charge

Waveform section from where the baseline noise is estimated
I-LGAD Timing error estimation

- For each Bias voltage five thousand waveform acquired.
- The timing error $\sigma_{\Delta t}$ estimated from the width (sigma) of the distribution of the measured time intervals (Δt)
- Assuming timing errors similar for both pulses then σ_t for I-LGAD is given by $\sigma_{\Delta t} / \sqrt{2}$ (quadratic sum of errors)

<table>
<thead>
<tr>
<th>Vbias [V]</th>
<th>Rise Time 1 [ps]</th>
<th>Rise Time 2 [ps]</th>
<th>Vp1 [V]</th>
<th>Vp2 [V]</th>
<th>σ_{baseline} [au]</th>
<th>SNR1</th>
<th>SNR2</th>
<th>Charge 1 [u. a.]</th>
<th>Charge 2 [u. a.]</th>
<th>Δt [ns]</th>
<th>$\sigma_t/\sqrt{2}$ [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>334</td>
<td>357</td>
<td>1.105</td>
<td>1.034</td>
<td>13.5</td>
<td>20.6</td>
<td>19.41</td>
<td>279.0</td>
<td>262.0</td>
<td>52.23</td>
<td>25.45</td>
</tr>
<tr>
<td>600</td>
<td>326</td>
<td>327</td>
<td>0.965</td>
<td>0.905</td>
<td>14.8</td>
<td>17.02</td>
<td>15.99</td>
<td>252.0</td>
<td>236.6</td>
<td>52.23</td>
<td>26.87</td>
</tr>
<tr>
<td>500</td>
<td>330</td>
<td>327</td>
<td>0.815</td>
<td>0.762</td>
<td>14.8</td>
<td>16.0</td>
<td>14.97</td>
<td>237.0</td>
<td>221.6</td>
<td>52.23</td>
<td>27.58</td>
</tr>
<tr>
<td>400</td>
<td>357</td>
<td>353</td>
<td>0.677</td>
<td>0.631</td>
<td>14.4</td>
<td>14.3</td>
<td>13.34</td>
<td>206.0</td>
<td>192.1</td>
<td>52.23</td>
<td>31.82</td>
</tr>
<tr>
<td>300</td>
<td>357</td>
<td>355</td>
<td>0.526</td>
<td>0.496</td>
<td>15.1</td>
<td>11.5</td>
<td>10.77</td>
<td>174.8</td>
<td>162.6</td>
<td>52.23</td>
<td>37.48</td>
</tr>
<tr>
<td>200</td>
<td>354</td>
<td>358</td>
<td>0.370</td>
<td>0.347</td>
<td>14.6</td>
<td>9.5</td>
<td>8.63</td>
<td>139.0</td>
<td>126.0</td>
<td>52.23</td>
<td>46.67</td>
</tr>
</tbody>
</table>
Expected time error dependence with SNR

\[\sigma_t \propto \frac{\text{rise time}}{\text{SNR}} \]

Defining the effective SNR as

\[SNR_{\text{eff}} \equiv \frac{SNR_1 SNR_2}{\sqrt{SNR_1^2 + SNR_2^2}} \]

\[\sigma_{\Delta t}^2 = \sigma_{t1}^2 + \sigma_{t2}^2 \Rightarrow \sigma_{\Delta t} \propto \frac{1}{SNR_{\text{eff}}} \]

47 ps @ SNR \(\approx 10 \)

25 ps @ SNR \(\approx 20 \)
Summary and Outlook

– Precise time stamping a must for future detectors to cope with very high pileup and track occupancy conditions.

– Several technological implementations under development.

– A p-in-p Low Gain Avalanche Detector (I-LGAD) to provide both high precision tracking and timing.

– As today, radiation tolerance remains the limiting issue.
THANK YOU FOR YOUR ATTENTION
... a particular case concerning radiation tolerance.

- The layout of the proposed LHC timing detectors: a mosaic of mini-pads (elements with area of few mm2)
- A pad-like LGAD is also a pad-like I-LGAD therefore they exhibit the same radiation tolerance