Charge Threshold study of a glass RPC in Avalanche Mode

Anup Kumar Sikdar, P.K.Behera

Department of Physics IIT Madras, Chenni

XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2018, December 10-14, 2018

Contents

Introduction

- 1.1 India-based Neutrino Observatory
- 1.2 Resistive Plate Chambers
- 2 Motivation
- 3 Analysis procedure
 - 3.1 Experimental setup
 - 3.2 Calibration of MFCs
- 4 Effect of Threshold variation on the performance of RPCs
 - 4.1 Total Charge
 - 4.2 Time Resolution
 - 4.3 Efficiency
- 5 Further Plans to study
- 6 Conclusions

ICAL at INO

- Iron-CALorimeter(ICAL) is a proposed magnetised detector which will be built in the INO cavern to study atmospheric neutrinos.
- three modules each of size : $16m \times 16m \times 14.5m$.
- 151 layers of 5.6 cm thick iron plates
- 5.6 cm thick iron plate interleaved with 4 cm gaps to house the 4 cm air gap for RPC RPCs.

Schematic view of the ICAL detector

 28,800 RPCs of 2m × 2m area, with 64 strips (strip pitch 30 mm) on either read-out planes.

Physics White Paper of the ICAL (INO) Collaboration

Resistive Plate Chambers

- Resistive Plate Chambers (RPC) are operated in avalanche mode. Gases : R134a (95.5%), isobutane (4.2%) and SF₆ (0.3%).
- High resistive electrodes: Glass/Bakelite $(10^{12} 10^{13} \Omega$ -cm)with 2mm gap.
- Constant and uniform electric field (E \approx 5 kV/mm) is maintained.

- Schematic of the RPC
 RPCs are widely used in High Energy Physics experiments:
 - Excellent time resolution (~ 1 ns).
 - Relatively simple and cheap construction.
 - ► Good efficiency (> 90%).
 - Two dimensional readout system.

Motivation

- Currents (in I-V characteristics) depends on applied voltage and shows a threshold behavior
 - Model PS705 consists of eight channels with individual threshold control which can be varied from -10mV to -1V
- Threshold voltage to minimize noise
- Shape of charge distribution is almost gaussian which allows to set a finite threshold without losing efficiency
- Simulation and past experience shows threshold of about 20fC allows detector to achieve full efficiency with smaller streamer probability(3)

Experimental setup

Experimental setup.

Madras 6 / 14

Calibration of MFCs

SF6 MFC Calibration

Effect of Threshold variation on the performance of RPCs

Charge distribution

Mean and Sigma of Charge.

Effect of Threshold variation on the performance of RPCs

Time resolution

Anup

DAE-BRNS 2018

Efficiency

Summary:

Future Plans

- Finding charge threshold of corresponding applied voltage.
- Measurement of noise rate (which depends on voltage) to minimize the noise.
- Variation in efficiency with threshold in different voltage.

Conclusion

We have used $30 \times 30 cm^2$ single gap RPC at 10.4kV and at 19 degreeC

- Mean of the charge distribution decrease with increasing threshold voltage
- \bullet Efficiency is highest $\sim 19.66 mV$ (needs more statistics to get better pattern)

Anup

References:

(1). S. Abe, et al. [KamLAND Collaboration], Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803

(2). S. Ahmed et al., Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79

(3). https://www.nevis.columbia.edu/ chi/rpc/cms-rpc-tech-note.pdf

Backup slides: A triggered muon pulse

Anup