Highlights of development and deployment of RPC detectors in India

B.Satyanarayana

Department of High Energy Physics

Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005

RPC development centres in India

00	Date:
000	MKM and safe want to Md. Ali Read to get
0	glass samples the brought 2man there Midi and
00	2.5 mar Saint Gobien Samples
00	
6	Date: 28/09/2001
3	Thickness measurements ware done for the Marti glass
3	(2mm that) using what sound gouge.
3	Mean = 2017 And RMS = 0.01267 (Entries = 27)
3	Obtained. (mm) (mm)
"	
2	Date:
	Resistivity measurement of mode glass (2mm) done
	as follows:
2	
	H.V.P.S
•	GND GND
-	
2	Ioxiox2mm glass
0	Sample Aluminium tape
0	
-	Typical repristivity measined was 10 12

AMU	Aligarh
BARC	Mumbai
BHU	Varanasi
Bose Institute	Kolkata
CUK	Kalaburagi
DU	Delhi
IISER	Mohali
IITB	Mumbai
ШТМ	Chennai
KU	Kashmir
NISER	Bhubaneshwar
PU	Chandigarh
SINP	Kolkata
TIFR	Mumbai
TKMCAS	Kollam
TU	Tejpur
VECC	Kolkata

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Schematic of a basic SRPC

Readout strips (X)

- Resistive materials like glass or bakelite for electrodes
- Special paint mixture (developed locally) for semi-resistive coating
- Plastic honey-comb laminations used as readout panel
- Special plastic films for insulating the readout panels from high voltages
- Two modes of operation: Avalanche (R134a:Isobutane:SF₆ ::95.5:4.2:0.3) and Streamer (R134a:Isobutane:Ar::56:7:37)

B.Satyanarayana DAE-BRNS High Energy Physics Symposium, IIT Madras

Studies on electrode characteristics

IIT Madras

DAE-BRNS High Energy Physics Symposium, IIT Madras

Electrode surface quality

Due to manufacturing process, glass surfaces are lot smoother compared to that of bakelite.

Delhi University

DAE-BRNS High Energy Physics Symposium, IIT Madras

Bulk and surface resistivities

Delhi University

DAE-BRNS High Energy Physics Symposium, IIT Madras

Glass characterisation studies

DAE-BRNS High Energy Physics Symposium, IIT Madras December 10-14, 2018

Paint conductivity and charge profile

SINP, Kolkata

DAE-BRNS High Energy Physics Symposium, IIT Madras

Precision studies on coat resistance

We obtained a position resolution of (0.98±0.11)mm using panels made of 5mm wide strips while it was (0.57±0.21)mm with panels made of 3mm wide strips.

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Studies on moister contamination

IIT Madras

DAE-BRNS High Energy Physics Symposium, IIT Madras

Automated leak test system

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Optimising operating gas mixtures

Delhi University

DAE-BRNS High Energy Physics Symposium, IIT Madras

Role of SF₆ in the RPC gas mixture

DAQ		Simulated		CRO		Simulated		Simulated	
Mean	Events	Mean	Events	Mean	Events	Mean	Events	Mean	Events
2.38	7695	2.27	8444	1.91	2161	2.28	2500	2.24	100000
1.60	5531	1.36	5799	1.37	2119	1.37	2500	1.37	100000
1.35	6318	1.30	6600	1.08	2297	1.30	2500	1.30	100000
1.18	1954	1.02	2000	0.79	2191	1.00	2500	1.01	100000
	Mean 2.38 1.60 1.35 1.18	MeanEvents2.3876951.6055311.3563181.181954	MeanEventsMean2.3876952.271.6055311.361.3563181.301.1819541.02	MeanEventsMeanEvents2.3876952.2784441.6055311.3657991.3563181.3066001.1819541.022000	MeanEventsMeanEventsMean2.3876952.2784441.911.6055311.3657991.371.3563181.3066001.081.1819541.0220000.79	MeanEventsMeanEventsMeanEvents2.3876952.2784441.9121611.6055311.3657991.3721191.3563181.3066001.0822971.1819541.0220000.792191	MeanEventsMeanEventsMeanEventsMean2.3876952.2784441.9121612.281.6055311.3657991.3721191.371.3563181.3066001.0822971.301.1819541.0220000.7921911.00	MeanEventsMeanEventsMeanEvents2.3876952.2784441.9121612.2825001.6055311.3657991.3721191.3725001.3563181.3066001.0822971.3025001.1819541.0220000.7921911.002500	MeanEventsMeanEventsMeanEventsMeanEventsMean2.3876952.2784441.9121612.2825002.241.6055311.3657991.3721191.3725001.371.3563181.3066001.0822971.3025001.301.1819541.0220000.7921911.0025001.01

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Studies on alternate gas mixtures

Electric field: 50 KV/cm and gas mixture Ar:CO₂:N₂ :: 5:65:30

SINP, Kolkata

DAE-BRNS High Energy Physics Symposium, IIT Madras

RPC timing properties for ICAL

- Charge identification efficiency (distinguishing up-going/down-going μ⁺/μ⁻) of proposed ICAL setup depends on timing properties of RPC.
- Experimental and numerical studies on a RPC and calculation of timing properties and efficiency of the detector at various operating conditions.
- In this connection, the electric field map of RPC was studied in detail as it is one of the crucial factors for RPC operation. Effect of design components and imperfections (surface roughness) on the detector properties.

3D surface profile of P-120 Bakelite from Contour GT-K 3D optical microscope.

Variation of E_z along the lines at various distances from the tip of ridge-like rough structures on RPC electrode.

SINP, Kolkata

DAE-BRNS High Energy Physics Symposium, IIT Madras

RPC timing properties for ICAL

- The RPC is slower near its edge and button spacer (affected region is ~6 mm).
- Reduction of RPC gas gap and using more than one gas gap (Multi-gap RPC configuration) were found to improve timing properties significantly (1ns \rightarrow 50ps).

Variation of (left) average signal generation time and (right) intrinsic time resolution of RPC with distance from a button spacer for different applied fields and gas mixtures.

SINP, Kolkata

DAE-BRNS High Energy Physics Symposium, IIT Madras

Bench marking of RPC detectors

1m × 1m RPC stack in TIFR

2m × 2m RPC test stand in TIFR

A few results from an RPC stand

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Multiple muons in RPC stands

Multi_Event_x_0057_029933_m2

Multi_Event_x_0057_025969_m2

Multi_Event_x_0057_009718_m2

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

ICAL, e-ICAL and m-ICAL

Parameter	ICAL	e-ICAL	m-ICAL	
No. of modules	3	1	1	
Module dimensions	16.2m×16m×14.5m	8m×8mx2m (90:1)	4m×4mx1m (720:1)	
Detector dimensions	49m×16m×14.5m	8m×8mx2m	4m×4mx1m	
No. of layers	150	20	10	
Iron plate thickness	56mm	56mm	56mm	
Gap for RPC trays	40mm	40mm	45mm	
Magnetic field	1.3Tesla	1.3Tesla	1.3Tesla	
RPC dimensions	1,950mm×1,910mm×24mm	1,950mm×1,910mm×24mm	1,950mm×1,910mm×24mm	
Readout strip pitch	30mm	30mm	30mm	
No. of RPCs/Road/Layer	8	4	2	
No. of Roads/Layer/Module	8	4	1	
No. of RPC units/Layer	192	16	2	
No. of RPC units	28,800 (107,266m ²)	320 (1,192m²) (90:1)	20 (74.5m²) (1440:1)	
No. of readout strips	3,686,400	40,960 (90:1)	2,560 (1440:1)	

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Deployment scenario of RPCs

Experiment	Area (m²)	Electrodes	Gap(mm) Gaps Mode		Туре	
PHENIX	?	Bakelite	2	2	Avalanche	Trigger
NeuLAND	4	Glass	0.6	8	Avalanche	Timing
FOPI	6	Glass	0.3	4	Avalanche	Timing
HADES	8	Glass	0.3	4	Avalanche	Timing
HARP	10	Glass	0.3	4	Avalanche	Timing
COVER-PLASTEX	16	Bakelite	2	1	Streamer	Timing
EAS-TOP	40	Bakelite	2	1	Streamer	Trigger
STAR	50	Glass	0.22	6	Avalanche	Timing
CBM TOF	120	Glass	0.25	10	Avalanche	Timing
ALICE Muon	140	Bakelite	2	1	Streamer	Trigger
ALICE TOF	150	Glass	0.25	10	Avalanche	Timing
L3	300	Bakelite	2	2	Streamer	Trigger
BESIII	1200	Bakelite	2	1	Streamer	Trigger
BaBar	2000	Bakelite	2	1	Streamer	Trigger
Belle	2200	Glass	2	2	Streamer	Trigger
CMS	2953	Bakelite	2	2	Avalanche	Trigger
OPERA	3200	Bakelite	2	1	Streamer	Trigger
YBJ-ARGO	5630	Bakelite	2	2 1 Streame		Trigger
ATLAS	6550	Bakelite	2	1	Avalanche	Trigger
ICAL	97,505	Both	2	1	Avalanche	Trigger

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Profile of an ICAL RPC detector

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Materials for gas gap fabrication

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Glass spray painting robot

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Screen printing on electrodes

B.Satyanarayana DAE-BRNS High Energy Physics Symposium, IIT Madras

Automated resistivity measurement

DAE-BRNS High Energy Physics Symposium, IIT Madras

Automatic RPC gap making

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Development of Pickup panels

Polypropylene as well as PVC panels are also developed.

Honeycomb panel

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Development of SFS pickup panel

December 10-14, 2018

13

15 14

Closed loop gas system

DAE-BRNS High Energy Physics Symposium, IIT Madras

Development of Gas systems

ICAL detector holds about 200,000 litres of gas all the time. Gas recycling system ensures that almost no gas is wasted.

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

ICAL, e-ICAL and m-ICAL

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

A collage of muon tracks in m-ICAL

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Fine tuning RPC operating conditions

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Muon life time measurement

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

High rate (low gain) RPCs

 The rate handling capability (RC) of the RPC per unit voltage drop is given by:

where *S* is the dead area, *Q* is the total charge, d is gap thickness, ε_0 is the dielectric constant of the gas, *V* is the applied voltage, ρ is the electrode resistivity, *t* is the electrode thickness and q_m is the average charge produced per event.

- Next generation collider experiments like HL-LHC-ATLAS, HL-LHC-CMS and CBM-FAIR require detectors with rate capability of ~20KHz/cm².
- If q_m can be reduced to 50fC, rate capability can be increased to 25KHz/cm².
- Experimental and simulation studies on RPC are in progress using cosmic muons to optimize gas mixture, noise threshold, and applied voltage to achieve required rate capability with reasonable efficiency.

Distribution of induced charge (pC)

NISER, Bhubaneshwar

DAE-BRNS High Energy Physics Symposium, IIT Madras

R&D with bakelite electrodes

VECC, Kolkata

DAE-BRNS High Energy Physics Symposium, IIT Madras

ong time operation of bakelite RPC

VECC, Kolkata

100 98

96

94

92

Efficiency (%)

DAE-BRNS High Energy Physics Symposium, IIT Madras

Multi-gap Resistive Plate Chamber

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

Feasibility of MRPC for PET

B.Satyanarayana

10

15

Number of gaps

20

25

DAE-BRNS High Energy Physics Symposium, IIT Madras

60 cm

75 cm

Sigma = 61.57 ± 2.7

Mean=-385.8 ± 2.8

Sigma=63.36 ± 3.6

Mean=-404.9 ± 3.0

Sigma=77.72 ± 4.5

Sigma=59.56 ± 2.1

 $Mean = -223.5 \pm 2.4$

Sigma = -53.2 ± 2.4

Mean=-204.0 ± 2.7

Sigma=63.85 ± 3.6

December 10-14, 2018

 2.03 ± 0.07 ns

 2.51 ± 0.07 ns

2.0 ns

2.5 ns

 81.2 ± 2.6

 100.5 ± 2.8

Stay tuned for ...

 High quality, but low cost RPC detector production by industries for e-ICAL and ICAL. Alternate gas mixtures for RPCs 3D simulation of multi-component, viscous gas flow through RPC Pixel readout techniques for RPCs Neural networks and machine learning techniques for efficient track reconstruction Muon tomography and cargo scanners Prototypes of MRPC based PET devices RPC detector technologies for contributing to accelerator and other futuristic experiments

B.Satyanarayana

DAE-BRNS High Energy Physics Symposium, IIT Madras

For more details ...

- Effect of the surface resistivity of electrode coating on the space dispersion of induced charge in Resistive
 Plate Chambers (Shamsul Haque Thoker et al)
- Study of Multigap Resistive Plate Chambers as a potential candidate for development of a PET device (M. Nizam et al)
- A portable Cosmic Muon Tracker using Resistive Plate Chambers (RPCs) for outreach activities (Yuvaraj E. et al)
- Manufacturing, installation commissioning of mini-ICAL magnet: INO project (S. P. Prabhakar et al)
- Mini-ICAL, INO Project: Magnetic field simulation & development of magnetic measurement set up (N. S. Dalal et al)
- Design and assembly of water-cooled coil for prototype mini ICAL magnet at Madurai for INO project (S. K. Thakur et al)
- Electronics and DAQ for the magnetized mini-ICAL detector at IICHEP (Mandar Saraf et al)
- Trigger generation system architecture for INO mini-ICAL system (Shib Shankar Sikder et al)
- RPC and CLS for mini-ICAL detector Ravindra (R. Shinde et al)
- Optical Communication for RPCDAQ (Abinaya et al)
- RPC-DAQ V3 module for INO's ICAL detector (Abinaya et al)
- A multi-hit TDC for INO experiment (Chithra et al)
- Database management system for RPC production QC (Pavan Kumar Vengala et al)
- μSR with mini-ICAL (Neha Panchal et al)
- Measurement of azimuthal dependence of Cosmic ray muon flux using 2m x 2m RPC stack at IICHEP Madurai (Pethuraj S et al)
- Muon multiplicity in 2m x 2m RPC and comparison with Corsika simulation (Suryanarayan Mondal et al)
- Update on muon reconstruction for INO-ICAL (A.D.Bhatt et al)
- Muon momentum spectra with mini-ICAL (A.D.Bhatt et al)
- Reconstruction of muon track in presence of noise in ICAL (Moon Moon Devi et al)
- Studies on deep learning technique for track reconstruction for INO (Deepak Samuel et al)
- Simulation studies for a shallow depth ICAL and planned cosmic muon veto detector for mini-ICAL (Neha Panchal et al)