Nimmala Narendra

Indian Institute of Technology, Hyderabad

・ロ・・雪・・叫・・ 山・ しゃ

• SM

• SM × U(1)_{B-L}

• SM × U(1)_{B-L}

• By including 3 N_R 's we can make the model anomaly free

- SM \times $U(1)_{B-L}$
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass

- SM \times $U(1)_{B-L}$
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter

- SM \times U(1)_{B-L} \times Z₂
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter

- SM \times U(1)_{B-L} \times Z₂
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter
- 3 N_R 's are odd under Z_2

- SM \times U(1)_{B-L} \times Z₂
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter
- 3 N_R 's are odd under Z_2
- Lightest one of the 3 N_R 's can be a dark matter candidate, say N_1

- SM \times $U(1)_{B-L} \times Z_2$
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter
- 3 N_R 's are odd under Z_2
- Lightest one of the 3 N_R 's can be a dark matter candidate, say N_1
- To explain smallness of neutrino mass we need to go high mass scale

- SM \times $U(1)_{B-L} \times Z_2$
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter
- 3 N_R 's are odd under Z_2
- Lightest one of the 3 N_R 's can be a dark matter candidate, say N_1
- To explain smallness of neutrino mass we need to go high mass scale
- Which is difficult in probing that high mass scale in experiments

- SM \times $U(1)_{B-L} \times Z_2$
- By including 3 N_R 's we can make the model anomaly free
- Seesaw mechanism-Neutrino mass
- Dark matter
- 3 N_R 's are odd under Z_2
- Lightest one of the 3 N_R 's can be a dark matter candidate, say N_1
- To explain smallness of neutrino mass we need to go high mass scale
- Which is difficult in probing that high mass scale in experiments

• To bring more allowed parameter space for dark matter mass we need more cross-section by having extra channels.

• SM ×*Z*₂

- SM $\times Z_2$
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$

- SM $\times Z_2$
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z_2

- SM $\times Z_2$
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z_2
- Explained neutrino masses at one-loop level

- SM $\times Z_2$
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z₂
- Explained neutrino masses at one-loop level

- SM ×Z₂
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z₂
- Explained neutrino masses at one-loop level

• Dark matter-lightest particle running in the loop can be a dark matter candidate

- SM ×Z₂
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z₂
- Explained neutrino masses at one-loop level

- Dark matter-lightest particle running in the loop can be a dark matter candidate
- Calling as 'scotogenic' dark matter

- SM ×Z₂
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z₂
- Explained neutrino masses at one-loop level

- Dark matter-lightest particle running in the loop can be a dark matter candidate
- Calling as 'scotogenic' dark matter
- We can show that the high mass scale is reduced

- SM ×Z₂
- Apart of 3 N_R 's, there is one inert scalar doublet, $\eta = (\eta^+ \ \eta_R + i\eta_I)^T$, under $SU(2)_L$
- And these particles are odd under Z₂
- Explained neutrino masses at one-loop level

- Dark matter-lightest particle running in the loop can be a dark matter candidate
- Calling as 'scotogenic' dark matter
- We can show that the high mass scale is reduced
- We can probe this in forthcoming experiments

▲□ → ▲□ → ▲目 → ▲目 → ● ● ●

- By combining these ideas we studied extra channel contributions on relic density
- And also studied the allowed parameter space from neutrino, direct detection and collider experiments.

• SM augmented by
$$U(1)_{B-L} \times Z_2$$

- SM augmented by $U(1)_{B-L} \times Z_2$
- With addition of 3 N_R 's, η and χ

- SM augmented by $U(1)_{B-L} \times Z_2$
- With addition of 3 N_R 's, η and χ
- $\bullet\,\,\chi\textsc{-Mixes}$ with SM-Higgs and paves a path in Direct detection of dark matter

- SM augmented by $U(1)_{B-L} \times Z_2$
- With addition of 3 N_R 's, η and χ
- $\chi\text{-Mixes}$ with SM-Higgs and paves a path in Direct detection of dark matter
- N_1 is the lightest among the Z_2 odd particles and can a candidate of DM

- SM augmented by $U(1)_{B-L} \times Z_2$
- With addition of 3 N_R 's, η and χ
- $\chi\text{-Mixes}$ with SM-Higgs and paves a path in Direct detection of dark matter
- N_1 is the lightest among the Z_2 odd particles and can a candidate of DM

Fields	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$	Z ₂
N _R	1	1	0	-1	-
η	1	2	$\frac{1}{2}$	0	-
χ	1	1	0	2	+

Fields	SU(3) _c	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$	Z ₂
N _R	1	1	0	-1	-
η	1	2	$\frac{1}{2}$	0	-
χ	1	1	0	2	+

$$\mathcal{L}_{Y} = \sum_{j,k=1}^{3} -y_{jk} \overline{\ell}_{jL} N_{kR} \ \tilde{\eta} - \lambda_{jk} (\overline{N_{jR}})^{c} \ N_{kR} \ \chi + h.c - V(H,\chi,\eta)$$

Where

$$V(H,\chi,\eta) = -\mu_{H}^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2} \\ -\mu_{\chi}^{2}\chi^{\dagger}\chi + \lambda_{\chi}(\chi^{\dagger}\chi)^{2} + \mu_{\eta}^{2}\eta^{\dagger}\eta + \lambda_{\eta}(\eta^{\dagger}\eta)^{2} \\ +\lambda_{H\chi}(H^{\dagger}H)(\chi^{\dagger}\chi) + \lambda_{H\eta}(H^{\dagger}H)(\eta^{\dagger}\eta) + \lambda_{\chi\eta}(\chi^{\dagger}\chi)(\eta^{\dagger}\eta) \\ +\lambda_{1}(\eta^{\dagger}H)(H^{\dagger}\eta) + \frac{\lambda_{2}}{2}\left[(H^{\dagger}\eta)^{2} + h.c.\right]$$

・ロト・白 ・ キョ・ キョ・ ・ キョ・

Radiative Neutrino Mass

Radiative Neutrino Mass

Radiative Neutrino Mass

$$(m_{\nu})_{ij} = \sum_{k} \frac{y_{ik} y_{kj} M_{k}}{32\pi^{2}} \left[\frac{M_{\eta R}^{2}}{M_{\eta R}^{2} - M_{k}^{2}} \log \left(\frac{M_{\eta R}^{2}}{M_{k}^{2}} \right) - \frac{M_{\eta I}^{2}}{M_{\eta I}^{2} - M_{k}^{2}} \log \left(\frac{M_{\eta I}^{2}}{M_{k}^{2}} \right) \right]$$

A typical choice of Yukawa couplings,

$$\begin{array}{lll} y_{e1} & = & 0.00001, y_{e2} = 0.621, y_{e3} = 0.0001, \\ y_{\mu_1} & = & 0.00001, y_{\mu_2} = 1.15, y_{\mu_3} = 0.485, \\ y_{\tau_1} & = & 0.045, y_{\tau_2} = 0.3, y_{\tau_3} = 0.765. \\ M_{N_1} & = & 99 {\rm GeV}, M_{N_2} = 10^4 {\rm GeV}, M_{N_3} = 10^3 {\rm GeV}, \\ M_{\eta_R} & = & 106.0000001 {\rm GeV}, M_{\eta_l} = 106 {\rm GeV}. \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Relic Density of N_1 in Scotogenic B - L model

Figure: DM annihilation channels.

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 の 9 9 9
33/51

Figure: DM co-annihilation channels.

<ロト < 部ト < 言ト < 言ト 言の < で 34/51

$$\begin{array}{l} \delta M = M_{\eta_R,\eta_I,\eta\pm} - M_{N_1} \\ M_{N_2} = 1010 \; {\rm GeV}, \; M_{N_3} = 1020 \; {\rm GeV}, \\ M_{h_1} = 125 \; {\rm GeV}, \; M_{h_2} = 400 \; {\rm GeV}, \\ M_{Z_{B-L}} = 2 \; {\rm TeV}, \; \sin\gamma = 0.1 \end{array}$$

・ロト・日本・モン・モン・モー うへで

$$\begin{array}{l} \delta M = M_{\eta_R,\eta_I,\eta\pm} - M_{N_1} \\ M_{N_2} = 1010 \; {\rm GeV}, \; M_{N_3} = 1020 \; {\rm GeV}, \\ M_{h_1} = 125 \; {\rm GeV}, \; M_{h_2} = 400 \; {\rm GeV}, \\ M_{Z_{B-L}} = 2 \; {\rm TeV}, \; \sin\gamma = 0.1 \end{array}$$

・ロ・・聞・・聞・・聞・ 聞 ろんの

$$\begin{array}{l} \delta M = M_{N_{2,3}} - M_{N_1} = 1, 10, 50, 100, 500 \; \mathrm{GeV} \\ M_{\eta\pm} = 1030 \; \mathrm{GeV}, \\ M_{\eta_R} = 1040 \; \mathrm{GeV}, \\ M_{\eta_I} = 1050 \; \mathrm{GeV}, \\ M_{h_1} = 125 \; \mathrm{GeV}, \\ M_{h_2} = 400 \; \mathrm{GeV}, \\ M_{Z_{B-L}} = 2 \; \mathrm{TeV}, \\ \sin\gamma = 0.1 \end{array}$$

・ロト・日本・ヨケ・田ケ・田・

$$\begin{array}{l} \delta M = M_{N_{2,3}} - M_{N_1} = 1, 10, 50, 100, 500 \; \mathrm{GeV} \\ M_{\eta\pm} = 1030 \; \mathrm{GeV}, \\ M_{\eta_R} = 1040 \; \mathrm{GeV}, \\ M_{\eta_I} = 1050 \; \mathrm{GeV}, \\ M_{h_1} = 125 \; \mathrm{GeV}, \\ M_{h_2} = 400 \; \mathrm{GeV}, \\ M_{ZB-L} = 2 \; \mathrm{TeV}, \\ \sin\gamma = 0.1 \end{array}$$

• The mass-splitting between $\delta M = M_{\eta_R,\eta_I,\eta^{\pm}} - M_{N_1}$ is more effetive than the mass-splitting between $\delta M = M_{N_{2,3}} - M_{N_1}$.

Direct Detection of Dark Matter

▲□▶▲□▶▲≣▶▲≣▶ ■ の�?

• Spin-independent elastic scattering cross-section of DM per nucleon

$$\begin{split} \sigma_{SI}^{h_1h_2} &= \frac{\mu_r^2}{\pi A^2} \left(\frac{\lambda_{11}\sin 2\gamma}{2\sqrt{2}}\right)^2 \left[\frac{1}{M_{h_2^2}} - \frac{1}{M_{h_1^2}}\right]^2 \\ &\times \left[Z(\frac{m_p}{v})(f_{Tu}^p + f_{Td}^p + f_{Ts}^p + \frac{2}{9}f_{TG}^p) + (A - Z)(\frac{m_n}{v})(f_{Tu}^n + f_{Td}^n + f_{Ts}^n + \frac{2}{9}f_{TG}^n)\right]^2 \end{split}$$

• Spin-independent elastic scattering cross-section of DM per nucleon

$$\begin{split} \sigma_{SI}^{h_1h_2} &= \frac{\mu_r^2}{\pi A^2} \left(\frac{\lambda_{11}\sin 2\gamma}{2\sqrt{2}}\right)^2 \left[\frac{1}{M_{h_2^2}} - \frac{1}{M_{h_1^2}}\right]^2 \\ &\times \left[Z(\frac{m_p}{v})(f_{Tu}^p + f_{Td}^p + f_{Ts}^p + \frac{2}{9}f_{TG}^p) + (A - Z)(\frac{m_n}{v})(f_{Tu}^n + f_{Td}^n + f_{Ts}^n + \frac{2}{9}f_{TG}^n)\right]^2 \end{split}$$

Collider Signature

- η^\pm can be next to LSP.
- If the mass splitting between $M_{\eta^{\pm}}$ and M_{N_1} is small.

The displaced Vertex signature:

$$\Gamma_{\eta^{\pm} \to N_{1}\mu} = \frac{y_{\mu_{1}}^{2} \left(m_{\eta^{\pm}}^{2} - (m_{N_{1}} + m_{\mu})^{2}\right)}{8m_{\eta^{\pm}} \pi} \sqrt{1 - \left(\frac{m_{N_{1}} - m_{\mu}}{m_{\eta^{\pm}}^{\pm}}\right)^{2}} \sqrt{1 - \left(\frac{m_{N_{1}} + m_{\mu}}{m_{\eta^{\pm}}^{\pm}}\right)^{2}}$$

Collider Signature

• If the mass splitting between $M_{\eta^{\pm}}$ and $M_{\eta^{0}}$ is of order of 100 MeV. The disappearing charged track signature:

$$\Gamma_{\eta^{\pm} \to \eta^{0}\pi} = \frac{f_{\pi}^{2}g^{4}}{m_{W}^{4}} \frac{\left(m_{\eta^{\pm}}^{2} - m_{\eta^{0}}^{2}\right)^{2}}{512m_{\eta^{\pm}}\pi} \sqrt{1 - \left(\frac{m_{\eta^{0}} - m_{\pi}}{m_{\eta^{-}}^{\pm}}\right)^{2}} \sqrt{1 - \left(\frac{m_{\eta^{0}} + m_{\pi}}{m_{\eta^{-}}^{\pm}}\right)^{2}}$$

45 / 51

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

Collider Signature

• The comparison between the leptonic decay mode and pionic decay mode for different values of Yukawa couplings.

Conclusion

- By extending the SM with $U(1)_{B-L} \times Z_2$ symmetry, we studied co-annihilation effects on relic density
- and the corresponding parameter space allowed from netrino, direct detection experiments.
- We studied interesting collider signatures, displaced vertex signature and disappearing charged track signature.

◆□ > ◆□ > ◆三 > ◆三 > → □ > ◆○ >

M_{N_1} (GeV)	$M_{\eta^{\pm}}$, $M_{\eta^{_0R}}$, $M_{\eta^{_0l}}$ (GeV)	$\sigma_{pp \rightarrow \eta^+ \eta^-}$ (pb)
100	105, 120, 120	0.189
200	205, 220, 220	1.65×10^{-2}
300	305, 320, 320	3.46×10^{-3}
400	405, 420, 420	1.04×10^{-3}
500	505, 520, 520	3.817×10^{-4}
600	605, 620, 620	1.593×10^{-4}
700	705, 720, 720	7.286×10^{-5}
800	805, 820, 820	3.568×10^{-5}
900	905, 920, 920	1.828×10^{-5}
1000	1005, 1020, 1020	9.794×10 ⁻⁶

Table: Production cross sections of $\eta^+\eta^-$ from $p\,p$ collisions at $\sqrt{s} = 14$ TeV LHC. Here we have kept fixed the mass splittings as $M_{\eta^\pm} - M_{N_1} = 5$ GeV and $M_{\eta^{0R}} - M_{\eta^\pm} = M_{\eta^{0l}} - M_{\eta^\pm} = 15$ GeV

M_{N_1} (GeV)	$M_{\eta^{\pm}}$, $M_{\eta^{OR}}$, $M_{\eta^{OI}}$ (GeV)	$\sigma_{pp \rightarrow \eta^+ \eta^-} (\text{pb})$
100	101, 120, 120	0.2176
200	201, 220, 220	1.782×10^{-2}
300	301, 320, 320	3.65×10^{-3}
400	401, 420, 420	1.087×10^{-3}
500	501, 520, 520	3.957×10^{-4}
600	601, 620, 620	1.647×10^{-4}
700	701, 720, 720	7.523×10^{-5}
800	801, 820, 820	3.656×10^{-5}
900	901, 920, 920	1.879×10^{-5}
1000	1001, 1020, 1020	1.004×10^{-5}

Table: Production cross sections of $\eta^+\eta^-$ from p p collisions at $\sqrt{s} = 14$ TeV LHC. Here we have kept fixed the mass splittings as $M_{\eta^\pm} - M_{N_1} = 1$ GeV and $M_{\eta^{0R}} - M_{\eta^\pm} = M_{\eta^{0l}} - M_{\eta^\pm} = 19$ GeV

M_{N_1} (GeV)	$M_{\eta^{\pm}}$, $M_{\eta^{OR}}$, $M_{\eta^{OI}}$ (GeV)	$\sigma_{pp \rightarrow \eta^+ \eta^0} (pb)$
100	101.2, 101, 101.2	0.2473
200	201.2, 201, 201.2	2.057×10^{-2}
300	301.2, 301, 301.2	4.359×10^{-3}
400	401.2, 401, 401.2	1.341×10^{-3}
500	501.2, 501, 501.2	5.001×10^{-4}
600	601.2, 601, 601.2	2.141×10^{-4}
700	701.2, 701, 701.2	9.938×10^{-5}
800	801.2, 801, 801.2	4.91×10^{-5}
900	901.2, 901, 901.2	2.546×10^{-5}
1000	1001.2, 1001, 1001.2	1.367×10^{-5}

Table: Production cross sections of $\eta^{\pm}\eta^{0}$ from p p collisions at $\sqrt{s} = 14$ TeV LHC. Here we have kept fixed the mass splittings as $M_{\eta^{0R}} - M_{N_{1}} = 1$ GeV and $M_{\eta^{\pm}} - M_{\eta^{0R}} = M_{\eta^{0l}} - M_{\eta^{0R}} = 200$ MeV