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Seesaw mechanism-Neutrino mass

o Dark matter

3 Ng's are odd under 2,

Lightest one of the 3 Ng's can be a dark matter candidate, say N,

@ To explain smallness of neutrino mass we need to go high mass scale

@ Which is difficult in probing that high mass scale in experiments
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My, =125 GeV, My, = 400 GeV, Mz, _, =2 TeV, siny =0.1

@ To bring more allowed parameter space for dark matter mass we
need more cross-section by having extra channels.
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Introduction

e SM XZQ

Apart of 3 Ng's, there is one inert scalar doublet,
n=(n" nr+in)7, under SU(2),
And these particles are odd under 2

Explained neutrino masses at one-loop level
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o Dark matter-lightest particle running in the loop can be a dark
matter candidate

e Calling as 'scotogenic’ dark matter
@ We can show that the high mass scale is reduced

@ We can probe this in forthcoming experiments
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@ By combining these ideas we studied extra channel contributions on
relic density

@ And also studied the allowed parameter space from neutrino, direct
detection and collider experiments.
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SM augmented by U(1)g_. X Z>
With addition of 3 Ng's, 7 and x

@ x-Mixes with SM-Higgs and paves a path in Direct detection of dark
matter

@ N is the lightest among the Z» odd particles and can a candidate of
DM

Fields SU(3)C SU(2)L U(l)y U(]-)BfL 22
Ng 1 1 0 -1 -
n 1 2 : 0 -
X 1 1 0 2 +




Fermion Singlet Dark Matter in Scotogenic B — L Model

Fields | SU(3): | SU(2). | UM)y [ UM)e— | Z2
Ng 1 1 0 -1 _
Ui 1 2 z 0 N
3 —
Ly = Z —yixlit Nkr 7 — Ak (Njg)¢ Nig x + h.c — V(H, x,n)
Jok=1
Where
— 2 gt T 17\2
V(H,x,m) = —paH H+ An(H'H)

=13 + M)+ e+ A (n'n)?
+FAnx (HTH)(XTX) + Ao (HTH)(0™n) + An (X x) (")

+A1(n"H)(H™n) + % {(H%f + h‘c}
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Radiative Neutrino Mass
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Radiative Neutrino Mass

(m)y = yikyis M M log Mir\ My log My
YT e 3w | M2 — M M2 M2, — M} M2

A typical choice of Yukawa couplings,

Yeo = 0.00001,ye = 0.621,ye3 = 0.0001,
Yu = 0.00001,y,, = 1.15,y,, = 0.485,

Yn = 0.045,y,, =0.3,y, = 0.765.

My, = 99GeV, My, = 10*GeV, My, = 10°GeV,

M,. = 106.00000001GeV, M,, = 106GeV.



Relic Density of N; in Scotogenic B — L model
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Figure: DM annihilation channels.
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Relic Density of N; in Scotogenic B — L model
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Figure: DM co-annihilation channels.
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Relic Density of /V; in Scotogenic B — L model
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Relic Density of N; in Scotogenic B — L model
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Relic Density of /V; in Scotogenic B — L model
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Relic Density of /V; in Scotogenic B — L model

§M = My, , — My, = 1,10, 50, 100, 500 GeV
M, 5 = 1030 GeV,

M, = 1040 GeV,

My, = 1050 GeV,

My, = 125 GeV,

’ My, = 400 GeV,
v Mz, | =2TeV,
siny =0.1

My, [GeV]

@ The mass-splitting between (M = M, . .+ — My, is more effetive
than the mass-splitting between M = My, ;, — My,
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Direct Detection of Dark Matter

107
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@ Spin-independent elastic scattering cross-section of DM per nucleon
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Direct Detection of Dark Matter
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@ Spin-independent elastic scattering cross-section of DM per nucleon
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Collider Signature

o 7t can be next to LSP.

o If the mass splitting between M,+ and My, is small.

The displaced Vertex signature:
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Collider Signature

o If the mass splitting between M,+ and M,po is of order of 100 MeV.

The disappearing charged track signature:
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Collider Signature

@ The comparison between the leptonic decay mode and pionic decay mode for
different values of Yukawa couplings.
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Conclusion

@ By extending the SM with U(1)g_. X Z, symmetry, we studied co-annihilation
effects on relic density

@ and the corresponding parameter space allowed from netrino, direct detection
experiments.

o We studied interesting collider signatures, displaced vertex signature and
disappearing charged track signature.
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“ My, (GeV) [ M, . Mg, Mo (GeV) [ Opponiyg— (PD) H

100 105, 120, 120 0.189
200 205, 220, 220 1.65 x1072
300 305, 320, 320 3.46 x1073
400 405, 420, 420 1.04 x10~3
500 505, 520, 520 3.817 x10~*
600 605, 620, 620 1.593 x10~ 7
700 705, 720, 720 7.286x10°°
800 805, 820, 820 3.568x10°
900 905, 920, 920 1.828x107°
1000 1005, 1020, 1020 0.794x10°°

Table: Production cross sections of n*n~ from p p collisions at /s = 14 TeV LHC. Here we have

kept fixed the mass splittings as Mni — My, =5 GeV and Mn"R — Mni:Mn"’ — Mni:15 GeV



[ Mn, (GeV) |

MUi , M,,IOR, Mnol (GeV) l JPP—W]W]_ (pb) H

100 101, 120, 120 0.2176
200 201, 220, 220 1.782 x10 2
300 301, 320, 320 3.65 x1073
400 401, 420, 420 1.087 x10~°
500 501, 520, 520 3.957 x10~*
600 601, 620, 620 1.647 x10~*
700 701, 720, 720 7.523x10°°
800 801, 820, 820 3.656x10°°
900 901, 920, 920 1.879x107°
1000 1001, 1020, 1020 1.004x10°°

Table: Production cross sections of n*n~ from p p collisions at /s = 14 TeV LHC. Here we have

kept fixed the mass splittings as Mni — My, =1 GeV and Mn"R — Mni:Mn"’ —

M, +=19 GeV



[ Mn, (GeV) |

n

M, . Mg, Moo (GeV) [ 0pp iy (Pb)

100 101.2, 101, 101.2 0.2473
200 201.2, 201, 201.2 2.057 x10~2
300 301.2, 301, 301.2 4359 x1073
400 401.2, 401, 401.2 1.341 x1073
500 501.2, 501, 501.2 5.001 x10~*
600 601.2, 601, 601.2 2.141 x10~*
700 701.2, 701, 701.2 0.938x107°
800 801.2, 801, 801.2 4.91x107°

900 901.2, 901, 901.2 2.546x107°
1000 1001.2, 1001, 1001.2 1.367x107°

Table: Production cross sections of nEn° from p p collisions at /s = 14 TeV LHC. Here we have

kept fixed the mass splittings as MnoR — My, =1 GeV and Mﬂi - M

n

or=M, o —

n

M, ,0r =200 MeV



