T-odd correlation effects and top pair production at LHC

Apurba Tiwari

Collaborator(s): Sudhir Kumar Gupta

Department of Physics
Aligarh Muslim University
Aligarh, U.P., India- 202002

DAE-BRNS HEP Symposium 2018, IITM, Chennai, India
Outline

- Introduction
- Model
- Numerical Analysis
- Observations and Outlook
Motivation

Evolution of Universe

big bang
matter
anti-matter

amount of matter = amount of anti-matter

our universe only with matter
First observation of CP-violation was in the kaon decay

LHC Experiment will look for CP-violation beyond the SM in Particle world.
CP-violation has been observed in strange, bottom and top quark.

Top quark is the only hope to search for direct CP violation in quark sector.

- It is much heavier than the other quarks.
- It has lifetime lesser than a quark takes to hadronise.
We consider the $t\bar{t}$ pair production at the LHC which could take place via the gluon fusion or $q\bar{q}$ annihilation.

\[gg \rightarrow t\bar{t} \rightarrow (bl^+\nu_l)(\bar{b}l^-\bar{\nu}_l) \]

The $t\bar{t}$ production cross-section is modified by the interaction Lagrangian

\[L_{int} = -i \frac{g_s}{2} \frac{d_g}{\Lambda} \bar{t} \sigma_{\mu\nu} \gamma_5 \, G^{\mu\nu} \, t \]
Observables

\[C_1 = \epsilon(p_b, p_{\bar{b}}, p_{l^+}, p_{l^-}) \]
\[C_2 = \tilde{q} \cdot (p_{l^+} - p_{l^-}) \epsilon(p_{l^+}, p_{l^-}, p_b + p_{\bar{b}}, \tilde{q}) \]
\[C_3 = \tilde{q} \cdot (p_{l^+} - p_{l^-}) \epsilon(p_b, p_{\bar{b}}, p_{l^+} + p_{l^-}, \tilde{q}) \]
\[C_4 = \epsilon(p, p_b - p_{\bar{b}}, p_{l^+}, p_{l^-}) \]
\[C_5 = \epsilon(p_t, p_{\bar{t}}, p_b + p_{\bar{b}}, p_{l^+} - p_{l^-}) \]

In \(bb \) CM frame

\[C_1 = \epsilon(P_b, P_{\bar{b}}, P_{l^+}, P_{l^-}) \xrightarrow{(bb)_{CM}} \propto P_b \cdot (P_{l^+} \times P_{l^-}) \]

Now \(P_b \cdot (P_{l^+} \times P_{l^-}) \xrightarrow{C} P_b \cdot (P_{l^-} \times P_{l^+}) = -P_b \cdot (P_{l^+} \times P_{l^-}) = P_b \cdot (P_{l^+} \times P_{l^-}) \)

\(P_b \cdot (P_{l^+} \times P_{l^-}) \xrightarrow{P} -P_b \cdot (-P_{l^+} \times -P_{l^-}) = -P_b \cdot (P_{l^+} \times P_{l^-}) \)
Asymmetry is calculated using the formula

\[A_{CP} = \frac{N_{\text{events}}(C_i > 0) - N_{\text{events}}(C_i < 0)}{N_{\text{events}}(C_i > 0) + N_{\text{events}}(C_i < 0)} \]
Observations

<table>
<thead>
<tr>
<th>Λ</th>
<th>d_g</th>
<th>A_1</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>0.07</td>
<td>0.11</td>
<td>-0.02</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>M_W</td>
<td>0.005</td>
<td>1.11</td>
<td>0.30</td>
<td>-0.87</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>2.28</td>
<td>0.65</td>
<td>-1.91</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>6.49</td>
<td>2.22</td>
<td>-5.18</td>
<td>5.13</td>
</tr>
<tr>
<td>0.5 TeV</td>
<td>0.005</td>
<td>1.11</td>
<td>0.30</td>
<td>-0.87</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.35</td>
<td>0.29</td>
<td>-0.28</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>1.77</td>
<td>0.45</td>
<td>-1.54</td>
<td>1.39</td>
</tr>
<tr>
<td>1 TeV</td>
<td>0.005</td>
<td>0.13</td>
<td>0.11</td>
<td>-0.14</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.11</td>
<td>-0.01</td>
<td>-0.12</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.75</td>
<td>0.26</td>
<td>-0.62</td>
<td>0.63</td>
</tr>
<tr>
<td>1.5 TeV</td>
<td>0.005</td>
<td>0.10</td>
<td>0.12</td>
<td>-0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.15</td>
<td>0.23</td>
<td>-0.30</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.79</td>
<td>0.24</td>
<td>-0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>2 TeV</td>
<td>0.005</td>
<td>0.06</td>
<td>-0.03</td>
<td>0.09</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>-0.12</td>
<td>-0.05</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.31</td>
<td>0.04</td>
<td>-0.39</td>
<td>0.33</td>
</tr>
</tbody>
</table>

\[\sqrt{s} = 13 \text{ TeV} \]

![Graph](image.png)
Outlook

- Top quark could be an effective tool to measure a CP Asymmetry present at the Large Hadron Collider through $t\bar{t}$ pair production.
- An LHC sensitivity of 5σ would be $|d_t| = \left| \frac{d_g}{\Lambda} m_t \right| \leq 0.01$ at 13 TeV LHC energy for an integrated luminosity of $36.1 \, fb^{-1}$.
Thanks