GitLab-Cl for FPGA
development
at LHCDb

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 2

GitLab-Cl

(Continuous Integration)

@) conr
|

CODE

RELATED CODE

21/11/2018

BUILD INTEGRATION TESTS

@&A

UNIT TEST REVIEW STAGING PRODUCTION

CI PIPELINE CD PIPELINE

.gitlab-ci.yml

CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

GitLab-Cl at LHCb %
(FPGA development only)
w docker
B
<[> & A Grafana

[|
EEEEE R 4
------------ O et ¢ SeEEEEE o)

kibana

CD PIPELINE

Wi e
IS YNGR e—

= Quartus SIEMENS

RN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

Our environment

= FPGA firmware
= Multiple repositories (submodules)

= Languages: VHDL, Verilog, TCL
= Toolchain: Questa, Quartus (proprietary)
= Cl: shell runners

= Low-level software Low-level
= Multiple repositories (independent) software
= Languages: C, C++, Python
= Toolchain: GCC, Python... FPGA SCADA
= Cl: shared runners firmware middleware

= SCADA middleware
= One repository

= Languages: CTRL (Siemens proprietary)
= Toolchain: PVSS (proprietary)
= Cl: dind? [wip]

= Each has its own Cl pipelines, but in the end
we also have to test the integration of the
different pieces working together

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 5

Target hardware

We receive data from the detectors (proprietary rad-hard protocols over optical fiber), process
it and emit it in a “COTS-friendly” format.
We have to produce different firmware (sometimes more than one)
for each device and for each sub-detector.

AMCA40 (Legacy) PCle40 (Production)

Front-end rad-hard optics

-

— Back-end high-speed links

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

| FW synthesis combinatorics

Control+Data

“MiniDAQ” Control Plane Data Plane

SciFi/FF
SciFi/FV

TAOY210d
X"¢AOY210d

Single-feature Timing
images Distribution

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

HC

| Firmware repository

= FPGA firmware split across different
responsibility areas ¢ git submodule

025d66360c780b3a656ccbc3f6e5ecbd847belaé calo (v5.1.1)

[} D iffe re nt d eve' | (o) p ers / i n Stitu tes WOr k i] fe8175a3£3682£8£5£470acble0cb971bel41612 data-generator (v5.0.0)]
pa ra I |e | on th eir res pectlve com po ne nt 8c1b593178c235cb5£10c02d42b111d33437e4d2 11i-amc40 (v5.0.0) B lli-pcied0vl @ 0724d5f8

41579cee5e9%9ac2548089%ede57357ble7bcde485¢c 1li-gbt (v4.0.2) & lli-pciedOv? @ ee0277c6

[] Each Com po.nent'is its OWn reposito'ry’ 7e0d00ac896835787acccc6ef9e32c5cf0cc048f 11::L—pc1:.e40v1 (v5.1.0) B Li-simulation @ 12¢60e48
vers!ongd using git tags and semantic PAea23E6380033bd3e045 dnceceabl0d Llispeiedovs (v8.2.1)
versioning

H calo @ 940ea%0b

data-generator @ feg175a3

B Ui-amcd0 @ 8c1b5931

& lli-gbt @ 1b58dcob

B muon @ a5559343
12c60e4830ef0af7ccea603df766705e00£15e9d 1lli-simulation (v5.0.0)

out-amc40 @ 967d80e9

fa8ba485e46559c99cla8al382691e3b275a563f muon (v5.1.1)

64ffdaab27b2280a7c£74279129b040789bedcc5 out-amcd0 (v5.1.0) out-pcied0 @ dc39c9bc

“ One u pStrea_m repo traCks the gIOba I 02f106£56c6048223ff7c39264a4c819cfc9a701 out-pcied0 (v5.1.0)
'State 'Of the flrmwa re, eaCh Com ponent £53869055429cc47244e8eb%e4ea73c598740cac rich (v5.1.1)
IS a g It S u b m Od u | e 412755857£8882d25ed943c24c23ee23ce59021e scifi (v5.2.2)

a8c2a8cbd8e3ed758c8dcee015£01602b5be9257 scripts (v5.2.5)

m Pyt h O n SC r.i pts. to m a. n a ge S l:I b m O d u Ies 474deac52e4£f0ba7e5d752e395bbb%9a025013403 sodin (v5.2.0)
for users W|th ||tt|e g|t eXper]ence dfcedbl8966e££6dbT£62£2aa05¢35ad5212£aa6 $0140 (v5.3.0) & s0l40 @ 3af37ds2

df9cc934e88615232bad48c56daf0333c6d2170c4 sold0-sc (v5.2.1)

rich @ 3eefc757

scifi @ 8377a6d4

scripts @ 58do5fel

sodin @ bce®3657

sol40-sc @ ele79529

[] Cl runs E DA d eS|gn ﬂ ow aga | N St th e 3c2be812add8291e32£9e0aed6bbea3sfo4e75Eb telld0 (v5.3.2) L0 @ 2c6c7960
u p St rea m re p O 0c3dc96588d£910d4982743ebb8ca8b9343778ed7 test (v5.3.0)

0d4723d931757a826d03££23d9%be9e5fd2cc554ad tfc (v5.2.0)

m Su b m Od u | es can trlgge r b u | |d S | N th e 3cc7a72cf5cebd9aa2b79d0d9bbddde5e814763b top-level (v5.2.1)
u pst ream re po fo r q Ui Ck testl ng 91d84a7bfc89d80ca0973bcl68b22£6a1178d636 ut (v5.2.1)

B test @ adbS1cs7

tfc @ 64bdbdca

top-level @ 657569d2

27£b24£92e00486823f0bleee4c6155a20503940 velo (v5.1.1) B ut @ 7cdc3ace

& velo @ 3569fa7f

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

| Firmware integration flow

DEVELOPER MAINTAINER
1. Push changes to one or more 1. Receive a merge request (a pipeline is
components automatically started)
2. Click a manual action in GitLab to build 2- !fthe change is minor, can decide to
new changes (or wait for the nightly automatically merge when the pipeline
build) completes
@ Pipeline #12399671 J running for 5a733d30.
@trigger_al[[
@ B4 Remove sourcebranch ~ Modify commit
@trigger_failed >
3. If not, wait for ipe:ine to publisf;]firmware
- . : RPMs, go to a development machine, run
3. When satisfied, r(ljm abscrlpththat will vum install Ihch-pciedO-firmware-merge-
generate tags and submit the new <MR# and test it
components upstream (a merge -
request is automatically created) 4. Push fixes to merge request until it can be
accepted
./scripts/git/release —--minor —--merge mycomponent/

5. Once merged, click a manual action in GitLab
to automatically create and publish a new
tag

() create_tag L
21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 9

Firmware pipeline

m

@cLeam mr @ mentor:amcd0/... @ quartus:amc40/... @ document @ publish_docs @createflag >
@mentur:amcdof.ﬂ Q @quartus amcd0/.. Q @ rpm_amc40_nig.. ©Q @publish_unstable Q
@mentnr:amcdmm Q @quartus amcd0/.. QO @ rpm_pcied0_nig... 0O
@mentor:amcimf’m Q @quartus amc40/.. O

@aesamcior & m Executed nightly, or when users send changes
@auartusamcaor.. @ upstream, or when manually triggered

(¥ quartus:pciedv.. © . .
= ~30 compilations (for now)

@quartus pciedOv.. QO

@unspennv. o ™ Most compilations can take several hours (between
4 and 10 depending on complexity) but only a few
minutes if cache is still valid

@ quartusipciedov... ©
@ quartuspciedov...
= Custom scripts to avoid a rebuild whenever possible
(EDA tools have poor dependency tracking)
< >
(30m ~ 20h)

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

Firmware lessons learned

=Resources
Describe simulation and compilation resources available in terms of gitlab-runner tags,
e.g. lhcb-daq40-firmware-quartus161-32G, |hcb-dag40-firmware-cache, Ihcb-daq40-firmware-publish

=Simulations o o .
Pool resources from other institutes within the LHCb collaboration

=Concurrent jobs .
Use rsync (1) and flock (1) to prevent Quartus cache corruption

* Long-running jobs
Write cron scripts to keep idle Quartus jobs alive (as gitlab-runner spontaneously terminates them after 1 hour)

=Dependencies
Keep Quartus project reports, write scripts to compare git histories between rebuilds

=*Merges
Automatically create MR based on branch name, reuse build cache after merge, fast-forward upstream merges

=Branches
Branches with the same name across components are triggered together (using GitLab Cl variables)

=*Deployment
Distribute firmware, WinCC components, software etc. as RPMs and write tools to install/program automatically

=Traceability
Store git version information in the FPGA image automatically, and write tools to extract this info in the field

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 11

Software pipeline

Build
(¥) make-cc7-dim
(v) make-cc7-disa...
(¥) make-cc7-driver
(¥) make-cc7-hwloc
(¥) make-cc7-mon
(¥) make-doc
(¥) make-slcé-dim
(v) make-slcé-disa...
(¥) make-slcé-driv...

@ make-slcé-hwl...

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Package

@dkms—cc?
@dkms—slcé
@rpm—cc?—amcdﬂ
@rpm—cc?—daqdﬂ
@rpm—cc?—pciedﬂ
@rpm—doc
@rpm—slcé—amcd(}
@ rpm-slcé-ceped
@rpm—slcé—daqﬂfﬂ

@rpm—slcé—pciedﬂ

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Install Publish
@ install-cc7 0 @ publish-unstable ©Q
@install—slcé a

= Low-level software and kernel drivers for our
custom hardware

= Main platform is CERN Centos7

= We still build for SLC6 and i386 for legacy
platform support

= Default system compiler + GCC7 for extra
diagnostics

21/11/2018

>
(~10m)

CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

WinCC-OA “pipeline”

Program FPGA . Subscribe . . Read information

Configure

Check PRBS ‘ Check RxCounters

\ 4

Start Run Check Triggers . Stop Run . TAP report

‘ Check RxReady

@

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

Final remarks

= Qverall, our experience with GitLab has been very positive!
= GitLab REST API is powerful enough to let us customize the Cl flow to our needs

= I’'m slowly converting our group to use GitLab CI
= Some “devops” attitude is required, but we make the system as easy to use as possible
= Some of these tools are still unfamiliar outside the domain of software engineering
= Integrating with EDA and SCADA toolchains requires extra effort

= Work in progress
= Integrate simulation output validator in pipeline

= Automate hardware-in-the-loop integration tests

= Eventually
= Deploy/rollback using GitLab environments

= Publish metrics and monitor hardware performance in a live system (Grafana/Kibana)

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 14

DIY (Do It Yourself)

You will need:

1. GitLab Cl
= Centrally provided by IT-CDA
- Includes shared Docker runners

2. Your toolchain packaged in a way that GitLab can use (Quartus/Vivado/etc.)
= Could be centrally provided by IT-CDA?

= Or: build your own Docker images
u Or: set up private runners on a physical or virtual machine (e.g. on CERN OpenStack)

3. A way to share artifacts across pipelines (if you want to reuse builds)
= E.g.: some NFS/SMB filesystem running on CERN OpenStack

= Or: GitLab CI provides an internally managed cache since version 9.0

. We have no experience with it however, and our cache is currently around 200 GB

4. Patience to write and debug lots of scripts! (it pays off, eventually)

= In addition to TCL, we use python a lot
. Python-gitlab for GitLab API integration
. GitPython to automate GIT repository manipulation

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 15

Thank you
for your
attention

21/11/2018

“I SPEND A LOT OF TIME ON THIS TASK.

T SHOULD |JRITE A PROGRAM AUTOMATING IT™"

THEORY:

WRITING~
CODE
WORK -~ FREE
\JORK ON-/ AUHATON TME
ORIGINAL TASK
TME
WORK

ANYVIORE

TIME

CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 16

GitLab issues

1. https://gitlab.com/gitlab-org/gitlab-ce/issues/38265
StuckCiJobsWorker wrongly detects, cancels 'stuck' builds when per-job
timeout is more than an hour

= Some of our jobs can easily require several hours

= We have less machines than we have jobs

= For now, we set up cronjobs running in background that use the GitLab API to
find jobs that have been killed for inactivity and resuscitate them

2. https://gitlab.com/gitlab-org/gitlab-ce/issues/37356

Relative submodule link to a nested project fails to resolve
= Our firmware flow relies on submodules

= Auser should be able to click on a submodule and open the corresponding
repository at the correct commit state

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 17

https://gitlab.com/gitlab-org/gitlab-ce/issues/38265
https://gitlab.com/gitlab-org/gitlab-ce/issues/37356

FPGA development 101

= Circuit is defined in a Hardware
Description Language

¢ Simulation
(*minutes)

= Simulator + testbench + input vectors

reproduce behavior of device and allow e Analvsis & Svnthesis R
some form of debugging (~h y) y
~hour
= Compiler toolchain maps specification J
into device-specific gate array 2
configuration and interconnection * Place & Route
= Lots of TCL scripts (~hours))
= 48 GB RAM!! (vendor recommendation)
= As many GHz as you can afford e Configure device N
= Still very time consuming Bitstream (~seconds)
] v,
= Workarounds >
= D_ifsftribute diffﬁ-rent compilations to * Integration
different machines (software and middleware)

= Reuse artifacts aggressively

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS

Firmware pipeline - stages

Jobs in “Prepare” stage Jobs in “Tag” stage
= create_mr = create_tag
= Users run a script to submit changes = Manual job
upstream = When maintainer wants to create a
= Pipeline picks up the new branch and new release, a tag is created according
creates a merge request automatically to our naming convention
" cache_master " clean_tag
= Previous compilations are preserved = Remove project cache for tag once
and cached firmware has been released
= Custom TCL script during FPGA = Every cache amounts to tens of
synthesis checks project against git gigabytes

history for modifications

" clean_mr
= Ensure the merged branch is deleted

= Update cache for master branch with
last compilation

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 19

