
GitLab-CI for FPGA 
development

at LHCb

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 1



The EP/LBC (Online) group

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 2



GitLab-CI
(Continuous Integration)

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 3

.gitlab-ci.yml



GitLab-CI at LHCb
(FPGA development only)

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 4



Our environment
 FPGA firmware

 Multiple repositories (submodules)
 Languages: VHDL, Verilog, TCL
 Toolchain: Questa, Quartus (proprietary)
 CI: shell runners

 Low-level software
 Multiple repositories (independent)
 Languages: C, C++, Python
 Toolchain: GCC, Python…
 CI: shared runners

 SCADA middleware
 One repository
 Languages: CTRL (Siemens proprietary)
 Toolchain: PVSS (proprietary)
 CI: dind? [wip]

 Each has its own CI pipelines, but in the end 
we also have to test the integration of the 
different pieces working together

CI

FPGA 
firmware

Low-level 
software

SCADA 
middleware

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 5



Target hardware
We receive data from the detectors (proprietary rad-hard protocols over optical fiber), process 

it and emit it in a “COTS-friendly” format.
We have to produce different firmware (sometimes more than one)

for each device and for each sub-detector.

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 6

AMC40 (Legacy) PCIe40 (Production)

GBT

PCIe

GBT

10GbE

Front-end rad-hard optics

Back-end high-speed links



FW synthesis combinatorics

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 7

VELO
RICH/LO
RICH/HO

SciFi/FF
SciFi/FV

UT/x3
UT/x4
UT/x5

CALOMUONTEST

Control+Data
“MiniDAQ”

Control Plane Data Plane

Timing 
Distribution

Single-feature 
images

A
M

C
4

0

P
C

Ie4
0

v1

P
C

Ie4
0

v2
.x



Firmware repository
 FPGA firmware split across different 
responsibility areas

 Different developers / institutes work in 
parallel on their respective component

 Each component is its own repository, 
versioned using git tags and semantic 
versioning

 One upstream repo tracks the global 
state of the firmware, each component 
is a git submodule

 Python scripts to manage submodules 
for users with little git experience

 CI runs EDA design flow against the 
upstream repo

 Submodules can trigger builds in the 
upstream repo for quick testing

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 8

$ git submodule 

025d66360c780b3a656ccbc3f6e5ecbd847be1a6 calo (v5.1.1)

fe8175a3f3682f8f5f470acb1e0cb971be141612 data-generator (v5.0.0)

8c1b593178c235cb5f10c02d42b111d33437e4d2 lli-amc40 (v5.0.0)

41579cee5e9ac2548089ede57357b1e7bcde485c lli-gbt (v4.0.2)

7e0d00ac896835787acccc6ef9e32c5cf0cc048f lli-pcie40v1 (v5.1.0)

06858bd6a25f6380c39bd3e94524aeeeeeb1501d lli-pcie40v2 (v5.2.1)

12c60e4830ef0af7ccea603df766705e00f15e9d lli-simulation (v5.0.0)

fa8ba485e46559c99c1a8a1382691e3b275a563f muon (v5.1.1)

64ffdaab27b2280a7cf74279129b040789bedcc5 out-amc40 (v5.1.0)

02f106f56c6048223ff7c39264a4c819cfc9a701 out-pcie40 (v5.1.0)

f53869055429cc47244e8eb9e4ea73c598740cac rich (v5.1.1)

412755857f8882d25ed943c24c23ee23ce59021e scifi (v5.2.2)

a8c2a8cbd8e3ed758c8dcee015f01602b5be9257 scripts (v5.2.5)

474deac52e4f0ba7e5d752e395bbb9a025013403 sodin (v5.2.0)

dfce4b18966eff6db7f62f2aa05c35ad5212faa6 sol40 (v5.3.0)

df9cc934e88615232ba48c56daf0333c6d2170c4 sol40-sc (v5.2.1)

3c2be812add8291e32f9e0aed6b6ea38f94e75fb tell40 (v5.3.2)

0c3dc96588df910d982743ebb8ca8b9343778ed7 test (v5.3.0)

0d723d931757a826d03ff23d9be9e5fd2cc554ad tfc (v5.2.0)

3cc7a72cf5cebd9aa2b79d0d9bbdd4e5e814763b top-level (v5.2.1)

91d84a7bfc89d80ca0973bc168b22f6a1178d636 ut (v5.2.1)

27fb24f92e00486823f0b1eee4c6155a20503940 velo (v5.1.1)



Firmware integration flow
DEVELOPER

1. Push changes to one or more 
components

2. Click a manual action in GitLab to build 
new changes (or wait for the nightly 
build)

3. When satisfied, run a script that will 
generate tags and submit the new 
components upstream (a merge 
request is automatically created)

MAINTAINER

1. Receive a merge request (a pipeline is 
automatically started)

2. If the change is minor, can decide to 
automatically merge when the pipeline 
completes

3. If not, wait for pipeline to publish firmware 
RPMs, go to a development machine, run 
yum install lhcb-pcie40-firmware-merge-
<MR#> and test it

4. Push fixes to merge request until it can be 
accepted

5. Once merged, click a manual action in GitLab
to automatically create and publish a new 
tag

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 9

./scripts/git/release --minor --merge mycomponent/



Firmware pipeline

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 10

(30m ~ 20h)

Prepare Simulate Compile Package Publish Tag

 Executed nightly, or when users send changes 
upstream, or when manually triggered

 ~30 compilations (for now)

 Most compilations can take several hours (between 
4 and 10 depending on complexity) but only a few 
minutes if cache is still valid

 Custom scripts to avoid a rebuild whenever possible 
(EDA tools have poor dependency tracking)



Firmware lessons learned
Resources

Describe simulation and compilation resources available in terms of gitlab-runner tags,
e.g. lhcb-daq40-firmware-quartus161-32G, lhcb-daq40-firmware-cache, lhcb-daq40-firmware-publish

Simulations
Pool resources from other institutes within the LHCb collaboration

Concurrent jobs
Use rsync(1) and flock(1) to prevent Quartus cache corruption

Long-running jobs
Write cron scripts to keep idle Quartus jobs alive (as gitlab-runner spontaneously terminates them after 1 hour)

Dependencies
Keep Quartus project reports, write scripts to compare git histories between rebuilds

Merges
Automatically create MR based on branch name, reuse build cache after merge, fast-forward upstream merges

Branches
Branches with the same name across components are triggered together (using GitLab CI variables)

Deployment
Distribute firmware, WinCC components, software etc. as RPMs and write tools to install/program automatically

Traceability
Store git version information in the FPGA image automatically, and write tools to extract this info in the field

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 11



Software pipeline

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 12

(~10m)

Build Package Install Publish

 Low-level software and kernel drivers for our 
custom hardware

 Main platform is CERN Centos7

 We still build for SLC6 and i386 for legacy 
platform support

 Default system compiler + GCC7 for extra 
diagnostics



WinCC-OA “pipeline”

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 13

Program FPGA Subscribe Reload Read information

ConfigureCheck RxReadyCheck RxCountersCheck PRBS

Start Run Check Triggers Stop Run TAP report



Final remarks
 Overall, our experience with GitLab has been very positive!
 GitLab REST API is powerful enough to let us customize the CI flow to our needs

 I’m slowly converting our group to use GitLab CI
 Some “devops” attitude is required, but we make the system as easy to use as possible
 Some of these tools are still unfamiliar outside the domain of software engineering
 Integrating with EDA and SCADA toolchains requires extra effort

 Work in progress
 Integrate simulation output validator in pipeline
 Automate hardware-in-the-loop integration tests

 Eventually
 Deploy/rollback using GitLab environments
 Publish metrics and monitor hardware performance in a live system (Grafana/Kibana)

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 14



DIY (Do It Yourself)
You will need:

1. GitLab CI
 Centrally provided by IT-CDA

 Includes shared Docker runners

2. Your toolchain packaged in a way that GitLab can use (Quartus/Vivado/etc.) 
 Could be centrally provided by IT-CDA?

 Or: build your own Docker images

 Or: set up private runners on a physical or virtual machine (e.g. on CERN OpenStack)

3. A way to share artifacts across pipelines (if you want to reuse builds)
 E.g.: some NFS/SMB filesystem running on CERN OpenStack

 Or: GitLab CI provides an internally managed cache since version 9.0
 We have no experience with it however, and our cache is currently around 200 GB

4. Patience to write and debug lots of scripts! (it pays off, eventually)
 In addition to TCL, we use python a lot

 Python-gitlab for GitLab API integration

 GitPython to automate GIT repository manipulation

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 15



Thank you 
for your 

attention

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 16



GitLab issues
1. https://gitlab.com/gitlab-org/gitlab-ce/issues/38265

StuckCiJobsWorker wrongly detects, cancels 'stuck' builds when per-job 
timeout is more than an hour

 Some of our jobs can easily require several hours

 We have less machines than we have jobs

 For now, we set up cronjobs running in background that use the GitLab API to 
find jobs that have been killed for inactivity and resuscitate them

2. https://gitlab.com/gitlab-org/gitlab-ce/issues/37356
Relative submodule link to a nested project fails to resolve

 Our firmware flow relies on submodules

 A user should be able to click on a submodule and open the corresponding 
repository at the correct commit state

 It’s already fixed on gitlab.com but not yet in the instance deployed at CERN

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 17

https://gitlab.com/gitlab-org/gitlab-ce/issues/38265
https://gitlab.com/gitlab-org/gitlab-ce/issues/37356


FPGA development 101
 Circuit is defined in a Hardware 
Description Language

 Simulator + testbench + input vectors 
reproduce behavior of device and allow 
some form of debugging

 Compiler toolchain maps specification 
into device-specific gate array 
configuration and interconnection
 Lots of TCL scripts

 48 GB RAM!! (vendor recommendation)

 As many GHz as you can afford

 Still very time consuming

 Workarounds
 Distribute different compilations to 

different machines

 Reuse artifacts aggressively

HDL

• Simulation
(~minutes)

HDL

• Analysis & Synthesis
(~hour)

Netlist

• Place & Route
(~hours)

Bitstream

• Configure device
(~seconds)

Tapfiles

• Integration
(software and middleware)

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 18



Firmware pipeline - stages
Jobs in “Prepare” stage

 create_mr
 Users run a script to submit changes 

upstream

 Pipeline picks up the new branch and 
creates a merge request automatically

 cache_master
 Previous compilations are preserved 

and cached

 Custom TCL script during FPGA 
synthesis checks project against git
history for modifications

 clean_mr
 Ensure the merged branch is deleted

 Update cache for master branch with 
last compilation

Jobs in “Tag” stage

 create_tag
 Manual job

 When maintainer wants to create a 
new release, a tag is created according 
to our naming convention

 clean_tag
 Remove project cache for tag once 

firmware has been released

 Every cache amounts to tens of 
gigabytes

21/11/2018 CERN ELECTRONICS USERS GROUP - GITLAB CI FOR FPGAS 19


