Contact resistance and current sharing in superconducting cables

V. Phifer¹,², X. Hu¹, J. Jaroszynski¹, J. Weiss³, D. van der Laan³, S. Pamidi⁴, D. Larbalestier¹, and L. Cooley¹

1. Mechanical Engineering, Florida State University, Tallahassee, FL, USA
2. Applied Superconductivity Center, NHMFL, Florida State University, Tallahassee, FL, USA
3. Advanced Conductor Technologies, Boulder, CO, USA
4. Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA

This work was supported by the National High Magnetic Field Laboratory which is supported by National Science Foundation through NSF/DMR-1644779 and by the US Department of Energy under the grant number DE-EE0007872
Problem: I_c dropouts along conductor length

- Inevitable defects in REBCO manufacturing
 - Drops in I_c along length
- Magnet design
 - Minimize hot spot formation
 - Use best pieces of conductor
 - Frequency of I_c drops > Frequency of long defect free tapes
- Promote current sharing
 - Current bypass local I_c drops
 - Use variable I_c (VIC) tapes in winding
 - Increased yield of viable tapes

What frequency of I_c drops can we tolerate?
Conductor on Round Core (CORC®) Cables

• Manufactured by Advanced Conductor Technologies (ACT)
• Flexible cables
• Multiple layers of REBCO tapes
 • Wound around Cu core
• Current sharing depends on tape-to-tape contact resistance R_c
• Promoting flexibility could increase R_c
 • Lubricated tapes
 • Not soldered
R_c and Current Sharing in CORC® Cables

• How do winding parameters affect R_c?
• Is R_c low enough to promote current sharing?
 • Over what length?
 • 1 m long samples \rightarrow comparable to 1 coil turn

4 CORC® Cables Constructed by ACT

<table>
<thead>
<tr>
<th>Cable</th>
<th>Winding Tension (N)</th>
<th>Winding Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Cable (CO)</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>High Tension Cable (HT)</td>
<td>50% higher</td>
<td>Normal</td>
</tr>
<tr>
<td>No Lubricant Cable (NL)</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>High Conductivity Lubricant (HC)</td>
<td>Normal</td>
<td>High Conductivity</td>
</tr>
</tbody>
</table>
Cable Geometry

- 2 mm wide Superpower tapes
- 2.78 mm diameter Cu former
- 3 Layers
- 2 tapes per layer

L = 50 cm
R_c Measurement (SF, 77 K)

- Forced current to transfer between tapes
 - I_{in} Layer 2
 - I_{out} from Layer 1 and Layer 3
- Ramp current to 10 A
- Determine R_c from $V(I)$ curves

Diagram:

$L = 50 \text{ cm}$
R_c Results

<table>
<thead>
<tr>
<th>Cable</th>
<th>Average R_c ($\mu\Omega \cdot cm^2$)</th>
<th>Open Symbols: Outer Layer \rightarrow Middle Layer</th>
<th>Closed Symbols: Inner Layer \rightarrow Middle Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Layer</td>
<td>1140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Layer</td>
<td>373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Winding Tension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Layer</td>
<td>2182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Layer</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Lubricant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Layer</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Layer</td>
<td>176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Conductivity Lubricant</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Layer</td>
<td>73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Best REBCO-REBCO lap joints\(^1\)
 - $R_c \sim 0.1 \mu\Omega \cdot cm^2$
- ReBCO-Substrate under pressure 2.4-144 MPa\(^2\)
 - $R_c = 20 - 100 \mu\Omega \cdot cm^2$

Effects of Cable Bending on R_c

- Performed the same R_c measurements
- 77 K, Self-field
- Ramp current to 10 A
 - I_{in} Layer 2
 - I_{out} from Layer 1 and Layer 3

<table>
<thead>
<tr>
<th>Bending Diameter (cm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
R_c in Control Cable

Open Symbols: Outer Layer \rightarrow Middle Layer
Closed Symbols: Inner Layer \rightarrow Middle Layer

30% original R_c

80% original R_c
High Tension Cable

Open Symbols: Outer Layer \rightarrow Middle Layer
Closed Symbols: Inner Layer \rightarrow Middle Layer

23% original R_c
No Lubricant Cable

Open Symbols: Outer Layer \rightarrow Middle Layer
Closed Symbols: Inner Layer \rightarrow Middle Layer

50% original R_c
So What happens if there is a defect?

• Created defect in Tape 5 of HC cable
 • Decreased tape width by ≈ 50%
 • Decrease Local I_c by ≈ 50%
• Energize “Good” and “Defect” tapes in parallel

How will the current transfer between tapes?
Current Bypass Defect?

- Current split evenly between tapes
- Current > defect Ic transfer to good tape
- After defect current transfer back
Current Transfer at Leads?

- Current split unevenly between tapes
- Defective tape carries I_c of defect
Current Transfer and Remain in Good Tape?

- Current split evenly between tapes
- Current > defect Ic transfer to good tape
- After defect current does not transfer back
Current Transfers in Cable

\[I_{out} (Good) \approx 0.6 \ I_{tot} \]
\[I_{in} (Defect) \approx 0.5 \ I_{tot} \]
\[I_{in} (Good) \approx 0.5 \ I_{tot} \]
\[I_{out} (Defect) \approx 0.4 \ I_{tot} \]

\[I_{out} \neq I_{in} \]
\[\rightarrow \text{Current sharing within cable} \]
Current Remains in Good Tape

Voltage Before Defect = Total Voltage

Voltage After Defect = 0

\[I_{in} - I_{out} \]

\[V^+ - V^- \]
Length required for current sharing?

\[E_c = 1 \mu V/cm \]

\[E_c \times L = I_{tr}R \]

\[R = \frac{R_c}{nA_x} \]

Length Required for Current Transfer

\[L = \sqrt{\frac{I_{tr}R_c p}{2A_x N_{tapes}E_c}} \]

\[n = \frac{2N_{tapes}L}{p} \]

\[n \approx 250 \text{ per meter} \]

L ranged from 20 cm to a few meters
Further work by Jeremy Weiss and Danko Van der Laan

- ACT constructed cables containing tapes with a significant drop in I_c
- 3 layers, 6 tapes (2 tapes per layer)

<table>
<thead>
<tr>
<th>Cable</th>
<th># Defect Tapes</th>
<th>Layer with Defect</th>
<th>Insulation Between Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIC-01</td>
<td>1</td>
<td>Middle</td>
<td>No</td>
</tr>
<tr>
<td>VIC-02</td>
<td>1</td>
<td>Middle</td>
<td>Yes</td>
</tr>
<tr>
<td>VIC-03</td>
<td>2</td>
<td>1-Middle 1-Outer</td>
<td>No</td>
</tr>
<tr>
<td>VIC-04</td>
<td>2</td>
<td>1-Middle 1-Outer</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Comparison of VIC cables

With Current Sharing Enabled
- 1 defect
 - Retains 83% of I_c
- 2 defects
 - Retains 74% of I_c

With Current Sharing Disabled
- 1 defect
 - Retains 64% of I_c
- 2 defects
 - Retains 55% of I_c
Conclusions

• R_c in CORC® is relatively large for current transfers on 1 m length
 • Changes in lubricant reduce R_c by an order of magnitude
 • Bending cable reduces R_c

• Evidence of current sharing was obtained → It’s more like a railway switch
 • About 20% of current in 1 tape was observed to transfer for $R_c \approx 50 \mu \Omega \cdot cm^2$

• Working on R_c measurements in magnetic field as well as investigating current sharing in VIC cables