

Update on Feather-M2.3-4 (KIT, Bruker)

UV-Sensitive Glue

Instrumentation Plate

1XCopper Wire 2XDistributed Fiber 1XBrag Fiber

Preparation of Instrumentation Plate

Coil Winding

110

ANA STAN

Joint resistance is 10 nOhm at 77 K Low critical current (artificial pinning?) Joint Test

nylon sleeve shrink wrap copper braid backing strip Roebel cable

The Magnet

Large Tuned Insulation HTS Magnets

CERN // Tokamak Energy June 2019

J. van Nugteren, R. Slade, L. Rossi, R. Bateman, G. Brittles, G. Kirby, M. Kruip, B. van Nugteren, M. Wilson

Introduction and Outline

tokamak energy a faster way to fusion

- Why collaboration? We have common goal: Need a big HTS magnet to work reliably.
- Understanding non-insulation coils using my network model ElMaTh (Electro-Magnetic and Thermal).
- First need proper validation before we can make predictions.
- Then scale up to larger magnets.

Fig. 1. Electrical network geometry with superconducting elements, shown separately for x and y directions, and voltage nodes. For clarity a very coarse version of the network is shown. For a couple of nodes the Voronoi cells used for the determination of the tape-to-tape contact areas are shown.

Tokamak's QA Coils

- Tokamak has constructed and tested a large set of double pancake solder potted QA coils.
- The purpose of the programme was to learn about coil winding, joints, consolidation, instrumentation, testing, validation of models etc.
- The results are quite remarkable and thus the question arose: can we somehow use NI coils for large magnets as well?

Deadpool, whose real name is Wade Wilson, is a disfigured <u>mercenary</u> with the superhuman ability of an accelerated healing factor and physical prowess.

Courtesy TF

Network Representation

- The coils are modelled using a preexisting network solver ElMaTh.
- The tapes are approximated using infinitely thin line elements. This implies that screening currents are excluded from the model.
- The contact between the tapes in the cable is modelled using contact conductances (stored in G_{ii}).
- The non-linear voltage of the superconducting elements is calculated using a parallel path model.

time independent linear time independent non-linear G_{ij} Mkcl.ir 0 0 $V_{\mathrm{nl},q}\left(I_r, T_r, \left|\vec{B}_r\right|, \alpha_r\right)$ R_{qr} 0 M_{kvl.ai} + $P_{\text{nl},s}\left(I_r, T_r, \left|\vec{B}_r\right|, \alpha_r\right) + P_{G,s}\left(V_i\right) + P_{R,s}\left(I_r\right)$ $K_{sp} - K_{cool,sp}$ 0 0 time dependent linear external sources residual $I_{s,i} + I_{\text{bg},i} \left(\frac{\partial B}{\partial t}\right)$ 0 0 0 $I_{\mathrm{res},i}$ dt $\frac{\partial I_r}{\partial t} + V_{\text{mlfmm},q} \left(\frac{\partial I_r}{\partial t} \right)$ $V_{s,q} + V_{\mathrm{bg},q} \left(\frac{\partial \vec{B}}{\partial t} \right)$ $+ \begin{bmatrix} 0 & L_{qr} + M_{S2T,qr} & 0 \end{bmatrix}$ ≅**0**, $V_{\text{res},q}$ $K_{\rm cool,ss} T_{\rm bath}$

NI Coil Network I

- The Coils are Represented by a 3D network consisting of line elements and nodes.
- Here we see an earlier version of the network.
- Many quenches occurred pre-maturely at the indicated locations.

NI Coil Network II

okamak

CÉRI

- The Coils are Represented by a network consisting of line elements and nodes.
- Ring joints must be connected to a large part of the innermost and outermost turn of each pancake.

Modelling Wang et al. NI Coil

- In the paper of Wang et al. a well characterised (both \geq numerically and experimentally) NI coil is found.
- The provided data is used for initial validation of the model. \succ
- Below the network representation of the wang et al. coil. \triangleright
- Turn to turn contact resistance is given as: 2.75 $n\Omega m^2$ >

Table 2. Specifications of the test NI coils.

Parameters	Coil
Number of turns	62*2
Inner and outer diameter	245 mm, 276 mm
Distance between upper and lower coil	0.8 mm
Total length of wire	101 m
Inductance, L_{coil} , calculated	8.11 mH
Bz per amp at centre, calculated	0.59 mT
<i>I_c</i> @ 77 K, tape	170 A
<i>I_c</i> @ 77 K, coil	97 A

Figure 4. The FEM model of the DP coil to calculate the induced magnetic field.

(b) Photo of NI DP coil

Figure 5. (a) Schematic drawing of the test circuit; (b) photo of the test NI coil.

Wang Coil Comparing Results

- The coil was tested at various ramp-rates: 0.22, 0.44 and 0.88A/s.
- > The voltage drop over the coil and magnetic field at the coil centre match very well.
- The calculated spiral current and radial currents look identical at 91, 131 and 200 s (provided by paper).
- > Similar results found for fast discharge (open circuit) test.

Spiral current *

> This validates the electro-magnetic part of the network model.

60

ElMaTh

3 5

0.88 A/s

Coil voltage (mV)

30

20

10

0

Magnetic field (mT)

3

0

100

Wang et al.

100

200

300

Time (s)

200

300

Time (s)

400

Voltage drop

100

Wang et al. Time (s)

200

300

500

400

=0.22 A/s (sim.)

0.44 A/s (sim.)

0.88 A/s (sim.)

=0.22 A/s (exp.)

k=0.44 A/s (exp.)

k=0.88 A/s (exp.)

500

k=0.22 A/s (exp.

500

600

Modelling QA Coil

- 128 Turns with type-0 tape pair
- > 50 mm inner diameter, 100 mm outer diameter
- Fully solder potted (both turn2turn and tape2tape):
 - Resistance: 450 nΩ cm² (from Fleiter et al.)
 - Thermal conductivity: 10.8 kW K⁻¹ m⁻¹
- > Tape and scaling relation from Shanghai Superconductors
- Operating temperature 20 K on cryocooler

TABLE 3. SPLICE RESISTANCE SURFACE UNIT OF TYPE 1 LAP JOINTS AT 4.2 K AND 77 K

Sample ID	Supplier	Spool ID	Overlap length	Solder	Se (nOhm·cm ²)			Lift factor
					4.3 K B//0.29 T	4.3 K B//9.54 T	77 K 0 T	Sc(4K)/ Sc (77K)
SPw_1_a	SuperPower	20110701	40 mm	Sn-Pb	284	413	952	0.30
SPw_1_b		20150824	39.5 m	Sn-Pb	302	437	908	0.33
Sox_1_a	SuperOx	2014-23-3	37 mm	Sn-Pb	609	766	1299	0.47
Sox_1_b		2014-23-3	30 mm	Sn-Pb	567	700	1151	0.49
Br_1_a	Bruker	278C-Cu	38.5 mm	Sn-Pb	98	186	405	0.24
Br_1_b		278C-Cu	40 mm	Sn-Pb	104	199	408	0.25
Sun_1_a	SuNAM	HCN04160	39.5 mm	Sn-Pb	1138	1595	2976	0.38
AM_1_a	AMSC	#578 B -5-	43 mm	Sn-In	1277		2329	0.55
AM_1_b		AMSC	1-101	40 mm	Sn-In	1092		2030

From: J. Fleiter and A. Ballarino. "In-Field Resistance of REBCO Electrical Joints at 4.2 K". CERN Internal Note 2015-10, EDMS Nr: 1562549

Shanghai Angular/Temperature/Field Dependent Critical Current

20

Agnetic Field [T]

Field Angle [deg]

-50

50

QA Coil Analysis

- Can we reproduce the test of the tokamak deadpool QA coil?
- The difficulty lies in the cooling term, which is constant W/(Km²). We decided to use fitting for this parameter.
- Reasonable agreement is found between the model and the measurement in terms of Voltage drop, Central Field, Temperature.

Energy Balance Check

- In the model we can calculate the power dissipation in each of the elements.
- The integral over the resistive power in the elements should be equal to the energy supplied by the power supply.
- The energy balance checks out, strengthening our confidence in the model.

Self Grading Confirmed

- > By reverse engineering the measurements from the Hall probes. It was suspected that the entire coil runs at the short sample.
- > The network model confirms this. The turns fill up until critical current reached then bleed off the remaining current radially.
- > This unique behaviour is ONLY possible in a solder potted coil.

QA Coil Quench

- tokamak energy a faster way to fusion
- The model can offer valuable insight in what happens during the quench
- Due to the very low turn-to-turn resistance each turn can be seen as a loop (closed on itself)
- In case of a normal zone. The current is inductively transferred to the neighbouring loops causing them to quench as well.
- This causes a "shockwave" to propagate throughout the coil effectively discharging the spiralling current in 100 ms.

QA Coil Quench (backup)

Back-up slide in case movie fails.

QA Coil Discharge

time 3203.6 [s]

55

50

45 Temperature [K]

35

0.14

0.12

0.1

0.08

0.06

0.02

0

۲ [m] 0.04

- When the circuit is opened the current is forced to return \succ radially through the turn-to-turn resistance.
- In this scenario, the magnet effectively becomes its own \geq dump resistor.
- However, due to the solder potting this resistance is very \geq low. This causes the magnet to heat up for a few seconds (phase I).
- Then the superconductor is pushed over the current \triangleright sharing temperature and a fast discharge occurs (phase II).
- This delayed behaviour was also observed in the QA coils. \geq

QA Coil MQE Calculation

Perhaps after talking about quench so much you have the impression that these coils quench easily. To prove otherwise see MQE vs Operating current below.

Franken Coil Quench

- Tokamak has performed further tests \geq in which multiple QA coils are stacked up (nicknamed "Frankencoil").
- See below the modelled quench >propagation for this case.
- Due to inductive transfer, the current \geq in the last coil looks dangerously high for mechanics. High field solenoid people be warned.
- **BUT THE COIL SURVIVED!**

Turn-to-Turn Resistance

- It is clear that the turn to turn resistance is an important parameter leaving to wonder if there is some sort of optimum.
- A parametric sweep is performed using QA coil geometry and it seems there is more-or-less three regimes present.

A Good Analogy

- > The difference between the regimes is also clearly visible in voltage.
- For the first one the voltage drop is azimuthal while for the second regime the voltage drop is radial.
- I like a good analogy. So here is one ...

Regime 2 Quench

Think of stirring your coffee and stop suddenly. The momentum of the coffee is the inductance. Like the water intake at a dam. The water/current keeps flowing continuously over the edge.

Intermediate Resistance

- In the second regime we see a completely different phenomenon. As the turn-to-turn resistance is too high for inductive current transfer.
- Here the current wants to skip the turn with the normal zone in it. Causing heating all the way round the coil.
- After initial decay, in which the turn dissipates its own stored energy, the only heating left is coming from the powers supply (diode good idea).

© 2019 Tokamak Energy // CERN

Tuned Insulation

- Now that we understand what happens we can optimise this for our purposes.
- For the current to be able to skip a turn the R_{t2t} must be much less than R_{nz}

$$f = \frac{1}{120} \qquad \frac{\rho_{t2t}}{\ell_c w_{tp}} = R_{t2t} = R_{nz} f$$

- The R_{nz} can be found with a 1D NZP model. It seems to almost uniquely depend on the copper thickness (and number of tapes in the cable).
- > Here ℓ_c is the length of the coil. So the turn to turn resistance depends on the coil size.
- Also the heat capacity of the turn must be sufficient to take its stored magnetic energy.

$$\frac{L_c I_{op}^2}{2N_{turn}} = E_t = N_{tp} \ell_c w_{tp} \sum_i D_i d_i \int_{T_{op}}^{T^*} C_p$$

i

Scale Up

- Can tuned insulation coil be scaled up?
- Initial modelling suggests that this is indeed the case.
- The energy of the quenching turn is distributed fully around the magnet.
- Forces between coils are a worry. When the current comes down in an antisymmetric manner. The forces can be huge.
- Time constant for field delay i.e. L/R is only a few seconds.
 - Partial insulation is not noticeable during 20 min ramp.

 \succ

Coupling Loss

- Parallel tapes for mitigating defects and other disturbances are required.
- Stack of tapes much easier to achieve than Roebel cable.
- But what about coupling losses?
- Despite common belief:
 - The current does not flow all the way to the joint and back (in fact there is no joint).
 - During a constant ramp most losses are dissipated inside the superconducting elements (due to over current).
 - The power dissipation for (slow) 1 hour ramp is 0.4 W -> at 20 K this is nothing.

What does all this mean?

- Solder potted coils probably best for small steady state magnets.
- For large magnets we can use tuned insulation.
- The time constants are on the order of seconds so will have little effect on slow 20 min powering cycle.
- Can expect to get some snapback.
- Pre-quench detection still preferred.
 Use inductive backing wire etc.
- Partial insulation as final measure to delay the quench.
- Then after detection use the partial insulation for fast discharge.
- Need practical solution for partial insulation layer.

Thank you!

© 2017 Tokamak Energy