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Introduction and Outline @teonkgr@fK

a faster way to fusion

>  Why collaboration? We have
common goal: Need a big HTS
magnet to work reliably.

> Understanding non-insulation
coils using my network model
EIMaTh (Electro-Magnetic and
Thermal).

>  First need proper validation
before we can make predictions.

> Then scale up to larger magnets.
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Fig. 1. Electrical network geometry with superconducting elements, shown
separately for x and y directions, and voltage nodes. For clarity a very coarse
version of the network is shown. For a couple of nodes the Voronoi cells used
for the determination of the tape-to-tape contact areas are shown.
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Tokamak’s QA Coils el

a faster way to fusion

>  Tokamak has constructed and tested a large set of
double pancake solder potted QA coils.

>  The purpose of the programme was to learn
about coil winding, joints, consolidation,
instrumentation, testing, validation of models etc.

>  The results are quite remarkable and thus the
guestion arose: can we somehow use NI coils for
large magnets as well?
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https://en.wikipedia.org/wiki/Mercenary

Network Representation teonkearrg?yaK

a faster way to fusion

>  The coils are modelled using a pre-
existing network solver EIMaTh.

>  The tapes are approximated using
infinitely thin line elements. This az
implies that screening currents are
excluded from the model.

>  The contact between the tapes in
the cable is modelled using contact

conductances (stored in Gy). s.C. element s —
ISC—) rjeurren
. 0.8 S
»  The non-linear voltage of the o s slement
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Wang et el. picture and approach



N| Coil Network | %@f“

a faster way to fusion

Connection to
nggntSoume

Connection to

Courtesy TE

>  The Coils are Represented
by a 3D network consisting
of line elements and nodes.

> Here we see an earlier
version of the network.

| >  Many quenches occurred
Joint Plate (source] pre-maturely at the
indicated locations.
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NI Coil Network I %@f“

a faster way to fusion

Connection to Connection to

Current Sink Current Source

Courtesy TE

>  The Coils are Represented
by a network consisting of
line elements and nodes.

Ring joints must be
connected to a large part
of the innermost and
outermost turn of each
pancake.

Joint Plate (source)

© 2019 Tokamak Energy // CERN
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Modelling Wang et al. NI Coil @energy W)

Y [mm]

tokamak

Table 2. Specifications of the test NI coils.

In the paper of Wang et al. a well characterised (both

. . o e Parameters Coil
numerically and experimentally) NI coil is found. :
Number of turns 62%2
. . e el . . I d di 245 , 276
The provided data is used for initial validation of the model. Distancs betsseen upner and lower coil 08 mm
Total length of wire 101 m
Below the network representation of the wang et al. coil. pdetance, P, ctcutuied S
per amp at centre, calculated 0.59 mT
. . . I. @ 77K, tape 170 A
Turn to turn contact resistance is given as: 2.75 nQm? l. @ 77K, coil 97 A

Figure 4. The FEM model of the DP coil to calculate the induced
magnetic field.

’ | 1
Switch op
. HTS tape without
<+> NI coil insulation

I

(a) test circuit (b) Photo of NI DP coil

Figure 5. (a) Schematic drawing of the test circuit; (b) photo of the
test NI coil.




Wang Coil Comparing Results @teonkgrng

a faster way to fusion

> The coil was tested at various ramp-rates: 0.22, 0.44 and 0.88A/s.
Wang et al.

>  The voltage drop over the coil and magnetic field at the coil 70¢

centre match very well. 2 6o} f.—/4 A
>  The calculated spiral current and radial currents look identical at & :2 ,~' ¥
91, 131 and 200 s (provided by paper). 8 F 4
goF A k=022 A’s
> Similar results found for fast discharge (open circuit) test. g 20f /.5/ ————— 5 g
S 10F | ———— k=0, s
>  This validates the electro-magnetic part of the network model. ¥ 9 A
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Modelling QA Coil by

a faster way to fusion

128 Turns with type-0 tape pair
50 mm inner diameter, 100 mm outer diameter

Fully solder potted (both turn2turn and tape2tape):
* Resistance: 450 nQ cm? (from Fleiter et al.)
* Thermal conductivity: 10.8 kW Ktm™

Tape and scaling relation from Shanghai Superconductors ©

Courtesy TE

Shanghai Angular/Temperature/Field

Operating temperature 20 K on cryocooler

TABLE3.  SPLICE RESISTANCE SURFACE UNIT OF TYPE 1 LAP JOINTS AT 42 K AND 77K Dependent Critical Current
12 ~///

Lift D
Se (nOhm-cm?) )
) : Overlap Sfactor - 10
Sample ID Supplier Spool ID Jength Solder 43K 43K 17K SRy =
B/0.29 T B/f9.54 T 0T  S.(77K) D
SPw 1 a 20110701 40 mm So-Pb 284 952 030 <
SuperPower o
SPw 1 b 20150824 39.5m Sn-Pb 302 437 908 0.33 S 6
Sox_1a  guperox 2014233 37 mm Sn-Pb 609 766 1299 0.47 E 3
Sox 1 b 2014-23-3 30 mm Sn-Pb 567 700 1151 0.49 =
_______________________________________________________________________________________________________________________ b
Brla Braker 278C-Cu 385mm  SnPb 98 186 405 0.24 T 2
S
Brib 278C-Cu 40 mm Sn-Pb 104 199 408 025 T
Sun 1a SuNAM  HCN04160  395mm  SnPb 1138 1595 2976 038 200
AM 1a e 4578B-5- 43 mm SnIn 1277 2329 0.55
AM 1 b 1-101 40 mm Sn-In 1092 2030 0.54 10
From: J. Fleiter and A. Ballarino. “In-Field Resistance of REBCO Electrical Aagnetic Field [T] 20 -50

Joints at 4.2 K”. CERN Internal Note 2015-10, EDMS Nr: 1562549 Field Angle [deg]



QA Coil Analysis @Tgﬂkg@% )

a faster way to fusion

>  Can we reproduce the test of the tokamak 1 Modelled with EIMaTh
deadpool QA coil? A

>  Thedifficulty lies in the cooling term, which 2
is constant W/(Km?). We decided to use
fitting for this parameter.

Central Field
Peak Field

Peak Fle\d

Center Field

>  Reasonable agreement is found between
the model and the measurement in terms
of Voltage drop, Central Field, Temperature. 4
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Energy Balance Check W)t ")

a faster way to fusion

50 - |
> In the model we can calculate the power i Fomer b Gorcuctances
. . . . Power in Superconductor
dissipation in each of the elements. ol inducive Power
>  The integral over the resistive power in 20
the elements should be equal to the < of
energy supplied by the power supply. 5 o
g 10l
>  The energy balance checks out,
stren%themng our confidence in the =/ o .
otal power = Electrical powef in all elements (P = VI
mOde . S0 Condl?ctance Power=EIthr'caI Power (GV2 or RI?)
-40 || Superconductor Power confains only resistive voltage| (P = V ¢givel)
Inductive power is calculated from the others (-P-GV2}V, .ictivel)
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Self Grading Confirmed @teonkgrng

a faster way to fusion

> By reverse engineering the measurements from the Hall probes. It was
suspected that the entire coil runs at the short sample.

> The network model confirms this. The turns fill up until critical current
reached then bleed off the remaining current radially.

>  This unique behaviour is ONLY possible in a solder potted coil.

time 1500 [s] time 1500 [s]

]

nt (A

Critical Curre:

N N ® @ © © o2 oo oo
8 8 8 88 38 g 3
g8 & 8

004 004 0:04 0.04
0.04 0.06 X [m] 0.06 X [m] 5 X [m] 008 Y [m]

Y [m]

Y [m]

0.04 -0.04

X [m] ' Y [m]

magnetic field magnetic field angle critical current
100
=
w4658 80 o
%10 CE‘L
@
z S .
O 0 60 O
N 5 w0
& 4 &
2 -0.04 0.04 40 £
: :
% 20
'_
2
Q
©



QA Coil Quench @teoﬂKgrng

a faster way to fusion

>  The model can offer valuable insight in what happens during
the quench

>  Dueto the very low turn-to-turn resistance each turn can be
seen as a loop (closed on itself)

> Incase of a normal zone. The current is inductively transferred
to the neighbouring loops causing them to quench as well.

>  This causes a “shockwave” to propagate throughout the coil
effectively discharging the spiralling current in 100 ms.

70
60

0.1
50

time 1700.3 [s] -

1100
0.1 0.1 &
X 1000 S
® z <
= 2 = =
=.0.05 © 005} 900 & 0.05} o
> g = :
40 g O ©
E O
K 800 g
(1]
o

700

— — 20 600 — —
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X [m] X [m] X [m]
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QA Coil Quench (backup @é%@@ﬁk

a faster way to fusion

>  Back-up slide in case movie fails.

Temperature Quench jump through joint
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tokamak

QA Coil Discharge energy

a faster way to fusion A
>  When the circuit is opened the current is forced to return
radially through the turn-to-turn resistance. time 3203.6 [s]

55

> In this scenario, the magnet effectively becomes its own
dump resistor.

0127

0.1 50

>  However, due to the solder potting this resistance is very
low. This causes the magnet to heat up for a few seconds

0.08f

N
o

006

<
(phase I). 3 :
> 0.04f ol
>  Then the superconductor is pushed over the current 2
sharing temperature and a fast discharge occurs (phase I1). *% o
0
>  This delayed behaviour was also observed in the QA coils. ool 30
14 ¢
-0.04 1 25
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QA Coil MQE Calculation W)t @

a faster way to fusion

>  Perhaps after talking about quench so much you have the impression
that these coils quench easily. To prove otherwise see MQE vs
Operating current below.

35

30 @

Need unphysical energy

to even start a propagating
normal zone. Need a bomb
to quench the magnet.

20 Here the coil is in overcurrent
causing the MQE to drop

25

MQE [J]
oo

15
* e Upper Bound
[ ]

Lower Bound °

0 500 1000 1500 2000 2500
Current [A]
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Franken Coil Quench teonkeargyak @

a faster way to fusion

>  Tokamak has performed further tests [
in which multiple QA coils are stacked
up (nicknamed “Frankencoil”).

>  See below the modelled quench
propagation for this case.

>  Due to inductive transfer, the current
in the last coil looks dangerously high
for mechanics. High field solenoid : :
people be warned. QA Coil Frafkendng

BUT THE COIL SURVIVED!
time 5100.95 [s]

000000I
O00OD000;:

™
<

I
o

Temperature [K]

(g
<
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Current [A]
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Turn-to-Turn Resistance

I Fully Soldered
le-11% 1e-10 le-9

It is clear that the turn to turn resistance is an important
parameter leaving to wonder if there is some sort of optimum.

A parametric sweep is performed using QA coil geometry and
it seems there is more-or-less three regimes present.

18 1e7|| 1e-6  1e5]|

tokamak
energy

a faster way to fusion

D

Contact resistance [Ohm m?]

4.8¢4 4.8e3 4.8e2

350

350 350 350

Regime 1.

-0.04 -002 0 0.02 0.04

\ 4

Regime 2.

004 002 0 0.02 0.04

0.14

(=]

N - © © ¢ o
T e 2 9 g <9
(=] c © © o

o
e
(=]

* Instant Discharge (Shockwave).
* Dominated by inductance.

* Quench propagates radially.

* PSU shutdown not needed.

3
@

|
g8 8 & § °
s S S o

0.02
0.04 1

—
=

0.14
012

* Long Duration turn2turn propagation.
Slowly collapsing the magnetic field.

* Dominated by resistance.

* Magnetic Energy is dissipated along
length of coil.

* PSU shutdown needed.

>
Thermal Conductivity [WK1m2]

0.04

0.02

=002

(linked by Wiedemann Franz Law)

Regime 3.

0041

004 002 0 002 004 006 008 01 012 014

* Instant burnout!
* Quench does NOT spread.
* Need pre-quench detection or very

fast (40 ms) detection/protection.

* Fast internal dump perhaps still

possible.



A Good Analogy @teon@ng

a faster way to fusion

> The difference between the regimes is also clearly visible in voltage.

>  For the first one the voltage drop is azimuthal while for the second
regime the voltage drop is radial.

> | like a good analogy. So here is one ...

Regime 1 Quench Regime 2 Quench

0.0471

0.04
0027 002t

0

0.02f Do
0.04 . : i . -0.04
-0.04 -002 0 0.02 0.04 004 002 0 0.02 0.04
X [m]
Think of stirring your coffee and stop Like the water intake at a dam. The
suddenly. The momentum of the water/current keeps flowing

coffee is the inductance. continuously over the edge.
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Intermediate Resistance @teonkear@fK

a faster way to fusion

> Inthe second regime we see a completely different
henomenon. As the turn-to-turn resistance is too
igh for inductive current transfer.

»  Here the current wants to skip the turn with the
nﬁ)rmalI zone in it. Causing heating all the way round
the coil.

> Afterinitial decay, in which the turn dissipates its
own stored energy, the only heating left is coming
from the powers supply (diode good idea).
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140 1200 20
120 1100
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100 1000
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. kamak
Tuned Insulation @teoneargya

a faster way to fusion

> Now that we understand what happens
we can optimise this for our purposes.

109 £ T T T E!
F Jo=970A/mm*, Ty =4.2K, By = 20T, ag= 84deg 3
Zaa 50 um substrate, 40 um copper _

> Forthe current to be able to skipa turn |
the R,,; must be much less than R, g 7

Critical o

Time [ms]

Framsitdonr
Current Staring |

1 Pt2t i gz :
—_ =R =R E = E
# 120 'ECth t2t nZ# .41—)([111] -
» TheR,, can be found with a 1D NZP 40
model. It seems to almost uniquely st 1D SINGLE Tape quench model

depend on the copper thickness (and Hastelloy thickness 50 micron

number of tapes in the cable). . ;g;'olfoc;t“i’cearlpceu”rdr'ecn“t'arf'e'd
S 250 C
> Here £, is the length of the coil. So 5 |B

the turn to turn resistance depends g™ |} @m0y ook 4
z on the coil size. 5" , @300 K
® 5. | @250 K — 4
S > Alsothe heat capacity of the turn =" . orsgy  ©20K o
g must be sufficient to take its stored 5| @50 ¢ @100 k —s
> magnetic energy. 0 A I I B
g 0 5 10 15 20 25 30 35 40
fg‘ L. 2 T* Copper Thickness [pm]
: — P = F, = Ny, l,w Did; | Cpi
I 2N t tptcWitp 1“4 pi
©) turn 7



kamak
Scale Up @tegﬂeargf

a faster way to fusion

time 4321.7 [s]

» Can tuned insulation coil be
scaled up?

> Initial modelling suggests
that this is indeed the case.

Y [m]
=1
Temperature [K]

> The energy of the quenching
turn is distributed fully
around the magnet.

> Forces between coils are a 22 01 o o ofzxmofa o o5 o5 07
worry. When the current
comes down in an
antisymmetric manner. The
forces can be huge.

> Time constant for field delay
i.e. L/Ris only a few seconds.

Partial insulation is not
noticeable during 20 min
ramp.

© 2019 Tokamak Energy // CERN
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: tokamak
Coupling Loss energy g

>  Parallel tapes for mitigating defects and
other disturbances are required.

>  Stack of tapes much easier to achieve than
Roebel cable. B _——

>  But what about coupling losses?

>  Despite common belief:

* The current does not flow all the way to the
joint and back (in fact there is no joint).

e During a constant ramp most losses are
dissipated inside the superconducting
elements (due to over current).

* The power dissipation for (slow) 1 hour ramp is

Y [m]

3
Current [A]
inside
outside

© 2019 Tokamak Energy // CERN
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What does all this mean? @t@%@gﬂ @

a faster way to fusion

>  Solder potted coils probably best for
small steady state magnets.

>  For large magnets we can use tuned
insulation.

>  The time constants are on the order
of seconds so will have little effect
on slow 20 min powering cycle.

>  Can expect to get some snapback.

>  Pre-quench detection still preferred.
Use inductive backing wire etc.

»  Partial insulation as final measure to
delay the quench.

>  Then after detection use the partial
insulation for fast discharge.

> Need practical solution for partial
insulation layer.

© 2019 Tokamak Energy // CERN
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Thank youl!



