varian

(Review of Medical application for HTS)

HTS for Commercial Proton Therapy

WAMHTS-5 Workshop Budapest, April 12, 2019

Arno Godeke *Varian Medical Systems Particle Therapy GmbH*

Medical applications

Potential medical fields for high temperature superconductors

varian

Vision: A World Without Fear of Cancer

Mission:

To combine the ingenuity of people with the power of data and technology to achieve new victories against cancer

Varian – a snapshot

* Varian FY 16, excluding Imaging Components.

** YTD thru Fiscal 3rd quarter 2017 Gross Orders, excluding North America

Advanced radiation therapy solutions

Proton Therapy

Why Proton Therapy?

Protons stop!

• Proton Therapy allows us to treat the tumor while sparing healthy tissue and other organs at risk

ProBeam®

Proton Platform – Overview

Proton Therapy

The Varian Range

ProBeam® proton therapy system sites

Proton therapy global market share

2014 to 2017 sales by number of rooms

Increasing global cancer burden… Expected to grow to 27M new cancer cases in 2050*

Now globally: • **76 centers** • **203 rooms**

10,700

Treatment Rooms**

Varian 50% market share assume 2 rooms / system

Implication 90 systems per year 2020 – 2050

Huge potential market, provided systems can be low cost and compact

- * American Cancer Society, Global Cancer Facts and Figures, 2007
- ** Assumes 60% of patients receive radiation, 20% of those are treated with protons, 300 patients per room (current throughput)

Varian

ProBeam® Systems

Size and Cost Complicates Market Penetration

Varian ProBeam®

- SC accelerator, NC beamline
- Status-of-Art clinical quality

Varian ProBeam® 360°

- SC accelerator, NC beamline
- Limit of Normal Conducting solutions

Mevion H8.5m x L10m

- SC accelerator on Gantry
- Trade-off of size versus beam quality

Varian TrueBeam® H3.2m x L8m

- P**h**oton treatment
- Very compact in comparison

> 7,750 systems installed base

70+

rooms sold

12

Potential for size reduction

Using superconducting technology

ProBeam® **Compact**

- 4,500 square feet
- Optimized for compactness
- **Fully IMPT** capable
- Advanced image guidance

Potential use of superconductivity

Cyclotron

- Main field coils
- "Flutter" coils

Gantry

Main bend magnets

 \bullet . . .

What has been done?

All closed LHe bath + cryocoolers

Varian AC250

Weight: 90 tons Beam energy: 250 MeV

Type: Isochronous cyclotron B-field: 2.4 Tesla (Nb-Ti) Avg. current: 800 nA continuous

IBA S2C2

Synchro cyclotron 5.7 Tesla (Nb-Ti $(+Nb₃Sn?)$) 55 tons 230 MeV 130 nA pulsed

Mevion SC250

Synchro cyclotron 9 Tesla (Nb₃Sn) 25 tons 250 MeV 19 nA pulsed

Varian AC250 → Isochronous I Magnetic field profiles (sketches)

More difficult to make small than synchro-cyclotron

- Nb-Ti main coils
	- − Isochronism at high energies

- Iron poles pieces "flutter"
	- − Beam stability (focusing)

Axial field

• Smaller diameter \rightarrow Higher field varian − **SC "flutter" coils** ¹⁵

What can superconductivity do?

Basics: Particle moving in a magnetic field

$$
Bqv = \frac{mv^2}{r} \to B = \frac{mv}{q} = \frac{p}{qr}
$$

\n
$$
E_{\text{kin}} = \frac{1}{2}mv^2 \text{ and } m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}
$$

\n
$$
\to m = m_0 \left(1 + \frac{E_{\text{kin}}}{m_0 c^2}\right) \text{ and } v = \sqrt{\frac{2E_{\text{kin}}}{m}}
$$

\n
$$
\to B = \frac{2.445}{r} \text{ for protons at } 230 \text{ MeV}
$$

Superconducting Gantry final bend → At most a 1 meter radius reduction varian Compact accelerators also \sim 7 T \rightarrow But SC flutter coils when isochronous

Conductor options

HTS compared to LTS: Ideally cryogen-free systems

- **Nb-Ti** $($ ~ \$1.50 $/$ m)
	- − Cheap and ductile, but 0.5 to 1 K margin at 4 K (risk)
- **Nb₃Sn** (~ \$3.50 / m)
	- − Wind-and-React difficult insulation + heat-treatment adds risk and cost
	- − Pre-reacted more costly than W&R + still requires 4 K cryogenics
- **Bi-2223** (\sim \$20 \$30 / m)
	- − Cost competitive with W&R Nb₃Sn and cost has downside potential
	- − Mature conductor, medium magnetization, 10 K cryogenics, cheap cable
- **Bi-2212** (~ \$20 \$30 / m)**?**
	- − Isotropic round wire with separated filaments, high Je when reacted under pressure
	- − Reaction (under high pressure?) at 900 °C in oxidizing environment
- **REBCO** $($ ~ $$30 $100 / m)$
- High Je, high cost, large magnetization, expensive cables, and single crystal conductor (risk) 17

Conductor performance

Nb-Ti: Record dipole quality $Nb₃Sn$: ITER bronze quality Bi-2223: DI-BSCCO Type HT-NX, B//c REBCO: 32 T quality (Abraimov), B//c

Ideally cryogen-free, conduction-cooled with cryocoolers

High temperature superconducting cable developments

Cyclotron main coils and Gantry magnets likely will need cables

Available high Je HTS Cables Recent Bi-2223 Cable

- Pre-reacted REBCO (**several k\$ per m**)
	- − Roebel (CERN)

− Cable on Round Core (Advanced Conductor Technologies)

- LBNL / OST Bi-2212
	- − Needs **900°C in O2** heat treatment

- DI-BSCCO HT-NX Roebel (≪ **\$500 per m**)
	- − Solid Material Solutions' Transposed Tape Cable

Probing studies on superconducting Gantry magnets

Nb-Ti Combined Function Magnet with *Large Momentum Acceptance*

Combined function magnet built from curved sections

Superconductor insertion into machined grooves

Assembly of second dipole layer over finished first

ProBeam® 360 with SC final bend magnet

Utilizing the Larger Momentum Acceptance Provided by superconductivity

- Pros
	- − Smaller radius
	- − Lighter magnet
	- − Smaller building
	- − *Energy variation*
- Cons
	- − More complex (risk, cost,…)
	- − Cryogenics
	- − *Energy variation*
	- − Ho-Hum diameter reduction

Larger gains require more than just superconductivity

Mevion Gantry-mounted accelerator

System diameter and weight driven by the accelerator

Compact synchrocyclotron enabled by $Nb₃$ Sn main coils

Summary

Does HTS have a future in medical applications?

- NMR \rightarrow Beyond 1 GHz
	- − Clear market potential due to lack of alternatives
	- − Small market
- MRI and isotope production
	- − Unlikely, due to high cost, but drive for cryogen-free could help
- Proton and heavier ion therapy \rightarrow Yes, if business case for HTS in favor of LTS can be made
	- − HTS is attractive; but **cost**, maturity, magnetization, length, quench, experience, reliability, strain…
	- − Nb-Ti has only about 1 K temperature margin at 7 T
	- − Nb₃Sn carries a lot of current but requires reaction for small radii
	- − Huge potential market, *but* systems need to become more compact, simpler, and much lower cost

Only 1% of cancer patients receive proton therapy when 20% would benefit

