Workshop for Accelerator Magnets – HTS 5

April 2019

HTS activities at DACM

Thibault Lécrevisse on behalf of DACM HTS Team <u>Thibault.lecrevisse@cea.fr</u>

People involved in HTS activities

P. Fazilleau: lead of HTS R&D activities, WP10 Eucard2 and NOUGAT coordinator M. Durante: EuCARD and EuCARD2 cos θ project leader C. Lorin: EuCARD2 cos θ design and follow-up, HTS Qpole T. Lécrevisse: Cern-CEA collaboration WP HTS leader and HTS R&D

G. Dilasser: Junior expert in screening current and numerical modelling for HTS

Accelerator magnets

P. Fazilleau

High Field

and R&D

Technical support

R. Godon

E. Pepinter

Y. Rabti

S. Samson

I. Le Perff: Internship on *I windings

Machado

M. Alharake: PhD on magneto-mechanics of a 40-45 T HTS magnet

HTS activities at DACM

HTS Roadmap

HTS Accelerator Magnets

- **EuCARD**

HTS High-Field Magnets

HTS R&D activities

M. Vaille : Master Thesis on HTS quadrupoles

Outline

HTS Roadmap

HTS Accelerator Magnets

- EuCARD
- EuCARD2

HTS High-Field Magnets

- NOUGAT insert
- HTS R&D activities

HTS Roadmap

HTS Accelerator Magnets

- EuCARE
- EuCARD2

HTS High-Field Magnets

NOUGAT insert

HTS R&D activities

Department of Accelerators and Cryo-Magnetism CEA Saclay - FRANCE

HTS Roadmap

	2010	2011	2012	2013	2014	2015	2016	2017	2018	20)19	2020	2021	2022	2023		U	\mathbb{Z}
-Field Magnets	ANR Super	SMES			AI	NR NOUGA	Т 10 т н1	'S insert in 20 T	resistive outser	t	ANR C H2020	ALISSON - Infradev	>2! / ISABEL	5 T full HTS mag	net 60 T		S A HTS acti	CLAY
High			Hybrid LN	CMI				42.	5 T hybrid magr	net (8.5 1	Н2С т пьті)	020 - FASU	IM	full SC mag	net 40 T	4	HTS Road	lmap
nets																	HTS Acce	lerator Magne
ator Mag	EuCARD	HTS di	pole		CERN-CEA EuCARD2	collaborat	iON HTS dij TS conductor ar	oole 5.4 T nd dipole	CERN-CEA	colla CARD3)	boratio н	n II HTS	quadrupole for accelerator				► EuCA	ARD
Acceler																		RD2
PhD - Post-doc	T. Lécrevis	se PhD	Contribution t	o HTS SMES coi	ls G.	Dilasser Pł	D Screen	ing currents in F	HTS coils	. ALHa	arake P	hD мал	gneto-mechani	cs of a 40 T HTS	coil		HTS High	-Field Magnets GAT insert activities
R&D						Vorte	ex-shaking	NI-M	11-PI coils		MI coi	ls + PHP c	ooling			16	Department Cryo CEA Sa	of Accelerators an -Magnetism aclay - FRANCE

DE LA RECHERCHE À L'INDUSTRIE

Accelerator magnets EuCARD (M. Durante & P. Fazilleau)

EuCARD 6 T HTS insert

The EuCARD High Temperature Superconductor (HTS) insert is a dipole magnet designed to operate at 18 T within the FRESCA2 test facility. DE LA RECHERCHE À L'INDUSTRII

SACLAY

HTS Roadmap

HTS activities at DACM

- ► Tests in SF : done in 2017 → 5.4T reached @ 4.2 K with 3.2 KA
- Ongoing work : adaptation from standalone to insert configuration
- <u>Target :</u> Test the magnet in FRESCA2 test facility by end of 2019.

Accelerator magnets EuCARD2 (M. Durante & C. Lorin)

DE LA RECHERCHE À L'INDUSTRIE

16

Target : magnet ready for test during summer 2019

HTS High-Field Magnets NouGAT insert – Experiments : step by step approach

1- Tests of a single pancake under external magnetic field at LNCMI

- Dimensions # NouGAT pancakes,
- SuperPower SCS6050-AP tape
- 3 heaters,
- 32 voltage taps.

2016-2017

- 'MQE' measurements [0-16 T] [200-375 A]
- Measurements of external junctions with current leads: 8-10 nΩ
- More than 60 quenchs
- Quench J > 800 A/mm² in the SC coil

2 - MI sub-scale prototype tests under High Background Magnetic Field

SACLAY

HTS activities at DACM

HTS Roadmap

HTS Accelerator Magnets

- EuCARD
- EuCARD2

HTS High-Field Magnets

NOUGAT insert

HTS R&D activities

epartment of Accelerators and Cryo-Magnetism CEA Saclay - FRANCE

HTS High-Field Magnets

3- NouGAT insert – design and fabrication (at LNCMI)

Parameter	unit	value
Winding ID / OD	mm	50 / 111
OB thickness	mm	5.5
# of DP	-	9
Coil height	mm	119
Tape lenght (pancake/total)	m	75 /1350
Tape I _c 77K,SF	А	211-264 (<u>226 bottom pancake</u>)
Coil inductance (calc.)	mH	846.3
Magnetic constant (calc.)	mT/A	45.60
Current to generate 10 T	А	220

DE LA RECHERCHE À L'INDUSTRIE
Cea
SACLAY
HTS activities at DACN
HTS Roadmap
HTS Accelerator Magnets
EuCARD
EuCARD2
HTS High-Field Magnets
 NOUGAT insert
HTS R&D activities

R&D activities

Stability & protection

Very slow propagation velocity of the quench: difficult to detect a resistive voltage,

► Small volume dissipating the energy generating very high temperatures.

The system of active protection (detect and dump, discharge resistor, heaters...) usually made for LTS must be very accurate (voltage measurement) and fast. complex and expensive

Solution remove/replace • insulation between turns so that the current can skirt the highly resistive quench zone,

► ANR NOUGAT

insert HTS with MI coils

► Internal "NI-PI-MI" R&D

study of different winding techniques (stability, charge *time constant*) *# visualization of a quench* with a fast camera

> NI = No Insulation MI = Metal as Insulation PI = Partial Insulation

Benchmarks done :

- Simulation from publication IEEE (2016)

30 turns MI pancake,

Azimutal current

Radial current

HTS activities at DACM

HTS Roadmap

HTS Accelerator Magnets

- **EuCARD**

HTS High-Field Magnets

12 HTS R&D activities

16

Multi-physics code for NI/MI coils

- Electricity (Partial Equivalent Electrical Circuit),
- Magnetism (unique analytical formulas of B and A for an arc of a tape)
- Thermic (2D finite differences, power law for SC *conductor*)

Quench propagation (temperature distribution)

P. Fazilleau

R&D activities

Screening currents

Due to their particular shape as tape, HTS 2G (YBCO), all variation of the magnetic field induces screening currents. In return, these currents generate a magnetic field, (« Screening Current Induced Field ») opposed to the main one (decrease of its magnitude, homogeneity degradation, temporal drift).

Problem solved with very fine filaments for LTS.

► Guillaume Dilasser PhD

experimental and numerical study of screening currents in HTS REBCO magnets

► Internal R&D

experimental study of vortex shaking

Simulation code for calculating screening currents

- Matlab (2D, A-V formulation)
- CAST3M (3D, T formulation)
- GetDP (2D, H formulation)

Tape current density during vortex-shaking

P. Fazilleau

T field in pancake and layers wound coils

U18 CAST3M

GetDP

Tape current density vs analytical formulas

SACLAY

HTS activities at DACM

HTS Roadmap

HTS Accelerator Magnets

- EuCARD
- EuCARD2

HTS High-Field Magnets

NOUGAT insert

HTS R&D activities

epartment of Accelerators and Cryo-Magnetism CEA Saclay - FRANCE

Internal R&D –Pi – Ni – Mi coils Study on different *I winding

Winding NI (No-Insulation)
 Winding PI (Partial insulation)
 Winding MI (Metal as Insulation)
 Copper, SUS, Kapton tape
 Superconductor tape

(b)

Stability and magnet constants study

(c)

- 1. Study of stability and quench behavior (using small SuS heater),
- **2.** Compare the time constant by discharging on an external dump or on the winding itself

(* stand for M, N, P, MC, S)

(a)

Department of Accelerators an Cryo-Magnetism CEA Saclay - FRANCE

R&D activities

Mechanics

MI coils of NOUGAT insert mechanics

CAST3M

DE LA RECHERCHE À L'INDUSTRIE COOSA S A C L A Y

HTS activities at DACM

HTS Roadmap

HTS Accelerator Magnets

- EuCARD
- EuCARD2

HTS High-Field Magnets

NOUGAT insert

HTS R&D activities

15

16

Department of Accelerators and Cryo-Magnetism CEA Saclay - FRANCE

Thank you for your attention

