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Part I:

Light Extraction from Crystal Fibers
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Main Aim

Main objective of the work:

Calculating Crystal Fibers Light Yield

To do so, 3 quantities are needed:

• PMTs’ Quantum Efficiency;

• Geometrical Light Extraction Efficiency;

• Sampling Fraction (provided by Shmanin Evgenii).

Simulations and/or direct measurements required.
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Setup

• Crystal Fiber: 10 cm;

• Air coupling → Thin air layers: 0.1 mm;

• Light Guide: 30 mm long,
20×20 mm2 and 10×10 mm2 surfaces.
Material: PMMA;

• Reflective Aluminium coating on the back
of the fiber;

• Scintillation events in multiple positions
along the fiber axis.
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Aluminization

With some fibers Al deposition worked fine...

...With others not that much.
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Light Extraction Efficiency

Averaging over different positions of the fiber on the light guide surface the
following results are obtained:

• Perfectly reflective Al coating

Material Mean Detected Light [%] ±

GAGG 2.01 0.01
YAG 2.41 0.01

• No Al coating

Material Mean Detected Light [%] ±

GAGG 1.25 0.01
YAG 1.41 0.01

The true value will be an in-between the two!
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Quantum Efficiency

PMTs’ Quantum Efficiency.

Detected photons spectrum.

Averaging:

Material Quantum Efficiency [%]

GAGG 8.6
YAG 8.9
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Light Yield

It is eventually possible to calculate the Light Yield starting from the number
of photoelectrons measured:

Material Light Yield [Ph/MeV] ±

GAGG 30 000 7 500
YAG 24 000 3 700

In agreement with the expected values.
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What’s Next?

• Results heavily depending on energy calibration → fine tuning work;

• Uncertainty on Aluminization effectiveness → direct measurements;

• Plastic fibers simulation work is in progress.
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Part II:

Accordion SPACAL
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The Idea

In order to improve the calorimeter performances at incident particle angles
orthogonal to the surface the front section could be built as an Accordion-like
structure.
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Simulation Program

Colours and Materials:

Green Scintillator: GAGG;

White Absorber: Lead.

• Incident particle along X axis;

• Perfectly polished surfaces;

• Thin layer of air between absorber
and scintillator (∼0.1 mm);

• Optical photons collected at the end
of the detector.
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Simulation Configuration

Dimensions of a single tile:

• X: 30 mm;

• Y: 1 mm;

• Z: 10 mm.

Two series of simulations:

1. Low energies for optical physics
study;

2. High energy charged particles for
energy resolution.

Parameters:

• Number of tiles along the x axis ∈
[5, 25];

• Bending angle (α) with respect to
the x axis ∈ [0, 26];
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What to expect?

An optical photon travelling parallel (blue) to the 1st tile (θinc = 90◦) will be
mapped by the rotation α into a photon with θinc = 90◦ − 2α in the 2nd tile.

• θcritical GAGG-Air interface: ∼ 32◦;

• Half of the light is mapped on to higher angles, half on to lower ones;

• No photon is scattered backwards if 2α < θcrit < θinc .
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The Model

1st Assumption

If θinc < θcrit the photon is lost.

Lost light angles:∫ θcrit

0

dθ︸ ︷︷ ︸
1st tile

+

∫ 2α+θcrit

2α

dθ︸ ︷︷ ︸
2nd tile

−
∫ θcrit

2α

dθ︸ ︷︷ ︸
overlap

= 2α + θc

2nd Assumption

Exponential loss of light due to material absorption.

Assuming x = Lnx with nx the number of tiles along the x axis. Then:

I (nx , α) = (I0 −mα) e−
L
λ
nx (1)



Fibers Light Yield Accordion SPACAL

At a Closer Look

However, having a closer look at the physics with a discontinuous approach,
the produced light can be divided into 3 groups.

• Ic : photons with
θinc < θcrit ;

• mα: photons with
θcrit + 2α > θinc > θcrit ;

• Ir : photons with
θinc > θcrit + 2α;

=⇒ Ic + Ir + mα = I0

I0 = Total produced light.

Two possible behaviours:

dIc = −
(
Ic
λ

+ TIc

)
dx (Absorption and Transmission)

dIr = − Ir
λ
dx (Absorption)

mα light bounces back and forth between the two behaviours.



Fibers Light Yield Accordion SPACAL

I0 = Ic + Ir + mα is the total light produced.
Then at each tile:

1. I (nx = 1) =
[
Ir + mα + Ice

−T
]
e−

L
λ

2. I (nx = 2) =
[
Ir + mαe−T + Ice

−2T
]
e−2 L

λ

3. I (nx = 3) =
[
Ir + mαe−T + Ice

−3T
]
e−3 L

λ

...

n-th. I (nx) =
[
Ir + mαe−T nx

2 + Ice
−Tnx

]
e−

L
λ
nx

Eventually:

I (nx) =
[
I0 − Ic [1− e−Tnx ]−mα[1− e−T nx

2 ]
]
e−

L
λ
nx (2)

• limT→∞ = [I ∗0 −mα]e−
L
λ
nx as the previous model;

• Line slope increases ∝ 1− e−T nx
2 ;

• Coefficient nx
2

or nx
4

? (Only half of the light is mapped on to lower θinc ).
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Results

I = I (α)

I ∝ α
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I (nx ,α)
I (nx ,0)

The line slope is increasing.
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Mean Path Length L

In order to quantitatively understand the data the mean path length travelled
by a photon in a tile and the absorption length are needed.

Being X = 30 mm, Y = 1 mm, Z = 10 mm a photon bounces on the surface
of the tiles perpendicular to the y direction N times:

N =
X

Y
cot(θ)

Being θcrit ∼ 32◦ ' π
6

the possible angles of incidence for a totally internal
reflected particle are θ ∈ [π

6
, π

2
].

⇓

〈N〉 =
1∫ Nmax

Nmin
dN

∫ Nmax

Nmin

NdN =
1∫ π

2
π
6

X
Y
−1

sin2 θ
dθ

∫ π
2

π
6

(
X

Y

)2 − cot θ

sin2 θ
dθ =

√
3

2

X

Y

Therefore the Mean Path Length of a photon whilst moving of X is:

L =

√
X 2 +

(√
3

2

X

Y
Y

)2

+

(√
3

2

X

Z
Z

)2

=

√
5

2
X ' 47.4 mm
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Exponential Decrease

I = I (nx , α = 0)

5 10 15 20 25
Numbers_of_Modules

5000

6000

7000

8000

9000

10000

11000

12000

13000  / ndf 2χ  1.971 / 3
p0        35.66± 1.488e+04 
p1            0±0.04743 − 
p2        647.5±  2796 
p3        0.04939±0.2955 − 

 / ndf 2χ  1.971 / 3
p0        35.66± 1.488e+04 
p1            0±0.04743 − 
p2        647.5±  2796 
p3        0.04939±0.2955 − 

Fit function: I (x) = p0e
p1x + p2e

p3x

• Monochromatic emission spectrum used!
→ Well-defined absorption length.

• p1 fixed at known value L
λ = 47.43

1000 .

• p2 = Ic

• p3 = −(T + L
λ

)
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Line Slope

Line Slope Vs. nx

Slope = m
(

1− e−T nx
2

)
e−

L
λ
nx

5 10 15 20 25
Nubers_of_Modules

100

120

140

160

180

200

220

240

260  / ndf 2χ  32.93 / 4
p0        9.472± 575.9 
p1            0±0.04743 − 
p2        0.003141±0.08743 − 

 / ndf 2χ  32.93 / 4
p0        9.472± 575.9 
p1            0±0.04743 − 
p2        0.003141±0.08743 − 

p0(1− ep2nx )ep1nx

Correcting for the absorption decrease.

Slope = m
(

1− e−T nx
2

)

5 10 15 20 25
Numbers_of_Modules

200

250

300

350

400

450

500

550

Li
ne

S
lo

pe  / ndf 2χ  32.93 / 4
p0        9.474± 575.9 
p1        0.003141±0.08743 − 

 / ndf 2χ  32.93 / 4
p0        9.474± 575.9 
p1        0.003141±0.08743 − 

p0(1− ep1nx )

Line slope is asymptotically constant!

Furthermore, on the right, p1 is 1
4 of the value of the exponential I = I (nx , 0) fit! ⇒ nx must be

divided by 4.
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What’s next?

• Careful analysis of the light transport by moving arbitrarily the scintillation
origin point, gathering timing, and wavelength of the photons;

• High Energy Simulations data analysis and finding of an optimum angle;

• Simulating glue layers.
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Thank you for your attention.
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