Non-linear flow modes with identified charged particles

Naghmeh Mohammadi (for the ALICE Collaboration) Zimanyi School 3/12/2018

Constraining QGP properties

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta} \left\{ 1 + 2\sum_{n=1}^{\infty} v_{n}(p_{\mathrm{T}},\eta) \cos[n(\varphi - \Psi_{n})] \right\}$$

$$v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

Zimanyi school- Naghmeh Mohammadi

Standard (Moment-based) spatial anisotropy:

Cumulant-based spatial anisotropy:

✤ n=2,3 : same as the standard definition ♣ n>3 : contributions from lower order spatial anisotropies

CERN

Zimanyi school- Naghmeh Mohammadi

Linear and non-linear response in higher flow harmonics

Phys. Rev. C 90, 024902 D. Teaney and L. Yan

 $\varepsilon_4' e^{i4\Phi_4'} \equiv \varepsilon_4 e^{i4\Phi_4} + \frac{3\langle r^2 \rangle^2}{\langle r^4 \rangle} \varepsilon_2^2 e^{i4\Phi_2}$ $\langle r^4 \rangle$

З

Linear and non-linear response in higher flow harmonics

 \mathbf{I}_n^L corresponds to the same order anisotropy • V_n^{NL} corresponds to the lower order anisotropies, e.g. ϵ_2 and/or ϵ_3 • V_n^{NL} and V_n^L are uncorrelated Phys.Lett. B773 (2017) 68

Zimanyi school- Naghmeh Mohammadi

Linear and non-linear response in higher flow harmonics

3/12/2018

$$\begin{aligned} v_{4,22} &= \frac{\langle v_4 v_2^2 \ \cos(4\Psi_4 - 4\Psi_2) \rangle}{\sqrt{\langle v_2^4 \rangle}} \\ v_{5,32} &= \frac{\langle v_5 v_3 v_2 \ \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle}{\sqrt{\langle v_3^2 v_2^2 \rangle}} \\ v_{6,33} &= \frac{\langle v_6 v_3^2 \ \cos(6\Psi_6 - 6\Psi_3) \rangle}{\sqrt{\langle v_3^4 \rangle}} \\ v_{6,222} &= \frac{\langle v_6 v_2^3 \ \cos(6\Psi_6 - 6\Psi_2) \rangle}{\sqrt{\langle v_2^6 \rangle}} \end{aligned}$$

Analysis method for *p***_T-differential non-linear flow modes**

Using 2 sub-event method:

$$v_{4,22}^{A}(p_{\mathrm{T}}) = \frac{\langle \langle \cos(4\varphi_{1}^{A}(p_{\mathrm{T}}) - 2\varphi_{2}^{B} - 2\varphi_{3}^{B}) \rangle \rangle}{\sqrt{\langle \langle \cos(2\varphi_{1}^{A} + 2\varphi_{2}^{A} - 2\varphi_{3}^{B} - 2\varphi_{4}^{B}) \rangle \rangle}}$$
$$v_{523}^{A}(p_{\mathrm{T}}) = \frac{\langle \langle \cos(5\phi_{1}^{A}(p_{\mathrm{T}}) - 2\varphi_{2}^{B} - 3\varphi_{3}^{B}) \rangle \rangle}{\sqrt{\langle \langle \cos(2\varphi_{1}^{A} + 3\varphi_{2}^{A} - 2\varphi_{3}^{B} - 3\varphi_{4}^{B}) \rangle \rangle}}$$
$$v_{633}^{A}(p_{\mathrm{T}}) = \frac{\langle \langle \cos(6\varphi_{1}^{A}(p_{\mathrm{T}}) - 3\varphi_{2}^{B} - 3\varphi_{3}^{B} - 3\varphi_{4}^{B}) \rangle \rangle}{\sqrt{\langle \langle \cos(3\varphi_{1}^{A} + 3\varphi_{2}^{A} - 3\varphi_{3}^{B} - 3\varphi_{4}^{B}) \rangle \rangle}}$$

Phys. Lett. B773 (2017) 68

- $v_{n,mk}$ combination of $v_{n,mk}^A$ and $v_{n,mk}^B$
- Non-flow effects:
 - Suppressed largely by using multi-particle correlations in the numerator and denominator
 - Residual non-flow can be suppressed with various gaps between the sub-events or 3 subevent method

Zimanyi school- Naghmeh Mohammadi

Analysis details

- p_{T} -integrated $v_n, v_{n,mk}, v_n^{L}$:
 - Minimum Bias Pb-Pb data at 2.76 TeV
- p_{T} -differential $v_{n,mk}$:
 - Minimum Bias Pb-Pb data at 5.02 TeV
 - ◆ 0-1% 10-20% and 40-50% centrality intervals
- Tracks used from TPC acceptance: $|\eta| < 0.8$
- ◆ 2 sub-events with pseudo-rapidity gap:
 - $|\Delta \eta| > 0.0$ for $p_{\rm T}$ -differential $v_{\rm n,mk}$
 - $|\Delta \eta| > 0.8$ for p_T -integrated $v_n, v_{n,mk}, v_n^L$
- RFPs (Reference particles): charged particles
 - $p_{\rm T}$ range: $0.2 < p_{\rm T} < 5.0 ~({\rm GeV}/c)$
- POIs (Particles of Interest) for $p_{\rm T}$ -differential $v_{\rm n,mk}$:
 - charged π , K and (anti-) \bar{p}
 - Particle Identification:
 - ★ p < 0.5 GeV/*c* TPC (dE/dx signal) (TPCn $\sigma < 3$)
 - p > 0.5 GeV/c TPC+TOF combined signals (p_T dependent)

CERN

POI	$p_{\rm T}$ range (GeV/c)	Purity
π±	$0.4 < p_{\rm T} < 6.0$	90%
K±	$0.4 < p_{\rm T} < 4.0$	80%
p+p	$0.4 < p_{\rm T} < 6.0$	80%

Zimanyi school- Naghmeh Mohammadi

Are V_n^{NL} and V_n^L orthogonal (uncorrelated)?

Zimanyi school- Naghmeh Mohammadi

Linear and non-linear response in higher flow harmonics

- ✤ Measurements at 2.76 TeV:
 - $p_{\rm T}$ -integrated non-linear flow modes
 - Clear centrality dependence for $v_{4,22}$, $v_{5,32}$, $v_{6,222}$ (Less for $v_{6,33}$)
 - The linear and non-linear response are uncorrelated:
 - p_{T} -integrated linear flow terms for v₄ and v₅
- Model Comparison:
 - IP-Glasma + Music + UrQMD: Initial conditions + viscous hydro + hadronic phase Phys. Rev. C 95, 064913 (2017)

$$v_4^{\rm L} = \sqrt{v_4^2 - v_{4,22}^2}$$

$$v_5^{\rm L} = \sqrt{v_5^2 - v_{5,32}^2}$$

Measurement of v_{4,22}(**p**_T) **for identified particles**

- Ultra-central collisions:
 - ◆ v_{4,22} consistent with 0 for all particle species
 - v_4 comes mainly from the linear component (v_4^L)
- Non-central collisions:
 - Mass ordering in the low p_T region ($p_T < 2.5 \text{ GeV}/c$)
 - Particle type grouping in the intermediate $p_{\rm T}$ region ($p_{\rm T}>2.5~{\rm GeV}/c$)

Measurement of v_{5,32}(**p**_T) **for identified particles**

Ultra-central collisions:

◆ v_{5,32} almost consistent with 0 for all particle species

- v_5 comes mainly from the linear component (v_5^L)
- Non-central collisions:
 - Mass ordering in the low $p_{\rm T}$ region ($p_{\rm T} < 2.5 \ {\rm GeV}/c$)
 - Particle type grouping in the intermediate $p_{\rm T}$ region ($p_{\rm T}>2.5~{\rm GeV}/c$)

Measurement of v_{6,33}(p_T) for identified particles

- The magnitude of v_{633} does not exhibit a strong centrality dependence
 - As expected since v₆₃₃ originates from the third symmetry plane (less geometry dependence)
- Ultra-central collisions:
 - \clubsuit Non-zero V_{6,33}
- Non-central collisions:
 - Indication that some features (i.e. mass ordering and particle type grouping) persist also in $v_{6,33}$

Hydrodynamic predictions:

- * and to $p_{\rm T} < 3 \text{ GeV}/c$ for p

TRENTO: Agreement up to slightly lower transverse momenta depending on the centrality interval: v_n of π and K only for $p_T < 1-2$ GeV/c

QM 2018 - Naghmeh Mohammadi

CERN

Measurements of the non-linear modes for identified particles vs. predictions

Eur.Phys.J. C77 (2017) no.9, 645 Zhao, Wenbin et al. iEBE-VISHNU hybrid model: VISH2+1 coupled to UrQMD Two initial conditions: AMPT, TRENTO 0.02 * $T_{switch} = 148 \text{ MeV}, \tau_0 = 0.6 \text{ fm/}c$ • AMPT: $\eta/s=0.08$ and $\zeta/s=0$ • TRENTO: $\eta/s(T)$ and $\zeta/s(T)$ Phys. Rev. C 94, 024907 (2016) JE Bernhard et al.

AMPT better describes data in different centrality intervals Models require a bit more work to describe the details that data reveal

ALI-PREL-158029

ALI-PREL-158037

ALI-PREL-158049

Summary

- Non-linear modes measured up to 6th harmonic and in both LHC energies Clear centrality dependence for $v_{4,22}, v_{5,32}, v_{6,222}$ (Less for $v_{6,33}$)
- $(p_{\rm T}> 2.5 {\rm ~GeV}/c)$

ALI-PREL-157989

First results on non-linear flow modes of identified particles: $v_{4,22}$, $v_{5,32}$, $v_{6,33}$ • Mass ordering in low p_T ($p_T < 2.5 \text{ GeV}/c$) • Particle type grouping in the intermediate $p_{\rm T}$

- ✤ iEBE-VISHNU: AMPT and TRENTo initial conditions with different sets of parameters
 - AMPT (η /s=0.08 and ζ /s=0) reproduces v_n and $v_{n,mk}$ measurements better than TRENTo ($\eta/s(T)$ and $\zeta/s(T)$)
 - Models require a bit more work to describe the details that data reveal

ALI-PREL-158037

Backup

Zimanyi school- Naghmeh Mohammadi

3/12/2018

Zimanyi school- Naghmeh Mohammadi

Hydrodynamic predictions: vn of pions

3/12/2018

Zimanyi school- Naghmeh Mohammadi

Hydrodynamic predictions: vn of kaons

3/12/2018

Zimanyi school- Naghmeh Mohammadi

Hydrodynamic predictions: vn of protons

