

Bose-Einstein correlations in pp and pPb collisions at LHCb

<u>Bartosz Malecki</u>, Marcin Kucharczyk (on behalf of the LHCb Collaboration)

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Zimányi School 2018 Budapest, 4th December 2018

Outline

- motivation for BEC studies
- LHCb experiment
- analysis method
- results for pp
- overview for pPb
- summary

Motivation

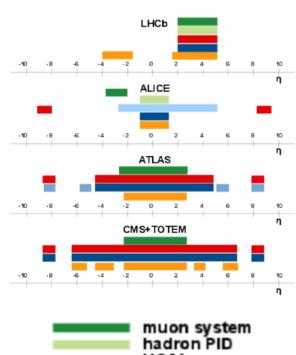
HBT interferometry in particle physics

• correlations in four-momenta (q_1, q_2) of indistinguishable particles emitted from the same source:

$$Q = \sqrt{-(q_1 - q_2)^2}$$

- due to symmetrization (Bose-Einstein correlations BEC)
 or antisymmetrization (Fermi-Dirac correlations FDC) of the total
 wave function
- useful tool to probe the spatial and temporal structure of the hadron emission volume
- many results on BEC from SPS, LEP, RHIC, LHC

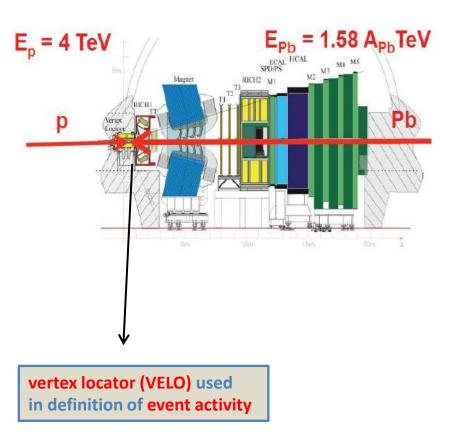
LHCb and BEC analyses

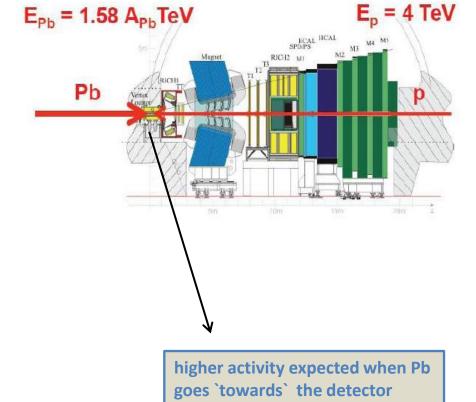

LHCb detector:

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

- single-arm spectrometer designed mainly to study CP violation in B physics
- fully instrumented in $2 < \eta < 5$ -> can serve as a **general purpose detector**
- unique acceptance among LHC experiments -> complementary results
- BEC analyses at LHCb:
 - identified same-sign charged pions (2-body)
 - Levy parametrization with $\alpha=1$ (1D)
 - in proton-proton collisions @ 7 TeV[published: JHEP 12 (2017) 025]
 - in proton-lead collisions @ 5 TeV (ongoing)

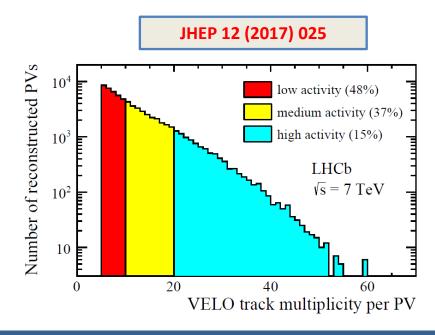
NEW/PLANNED ANALYSES


- 3-body correlations in pp @ 7 TeV (ongoing)
- 3D analysis in pp @ 7 TeV
- BEC in PbPb collisions
- BEC study for D mesons



pPb data taking @ LHCb

• two beam modes (pPb/Pbp) with asymmetric beams



Event multiplicity bins

- BEC parameters depend on total multiplicity of an event
- VELO track multiplicity (N_{ch}) is a good probe of that quantity
- PVs are split into multiplicity bins based on N_{ch} distribution (optimized to ensure similar statistics in each bin)
- **unfolding of** N_{ch} allows for comparison between experiments after taking into account different η acceptances (model-dependent)
 - done for pp using PYTHIA 8 in $2 < \eta < 5$
 - planned also for pPb
- in pp: corresponding activity classes defined as fractions of N_{ch} distribution (independent of specific experiment features, e.g. efficiency, acceptance)

Datasets

рр	
PP	

- pp data 2011@7 TeV
 (40M minimum bias events)
- MC PYTHIA 8
 (20M minimum bias events)
- 3 bins in N_{ch}

bin#	VELO N _{ch}	activity class	unfolded N _{ch}	
1	5-10	low	8-18	
2	11-20	medium	19-35	
3	21-60	high	36-96	

 pPb/Pbp data 2013@ 5 TeV (70M minimum bias events for each beam configuration)

pPb

- MC EPOS
 (12M for each beam configuration)
- 6 bins in N_{ch}
- 3 bins in N_{ch} + 3 bins in k_T^* (preliminary)

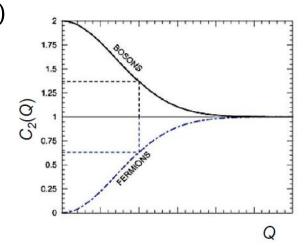
bin#	VELO N _{ch}		
	p-Pb	Pb-p	
1	5 - 25	5 - 30	
2	26 - 33	31 - 45	
3	34 – 40	46 – 55	
4	41 – 47	56 – 65	
5	48 – 54	66 – 80	
6	55 – 80	81 - 140	

 $^{^*}k_T$ – average transverse momentum of particles in a pion pair

Correlation function

correlation function (experimentally):

$$C_2(Q) = \frac{N(Q)^{SAME}}{N(Q)^{REF}}$$


distribution for pairs of samesign pions from same PV [BEC effect present]

distribution for reference sample [no BEC effect]

- event-mixed reference sample is used:
 - pairs of pions from different events from PVs with same VELO N_{ch}
 - other correlations also removed -> construct double ratio (next slide)
- in this analysis Levy parametrization (with $\alpha=1$) + long-range correlations:

$$C_2(Q) = N(1 \pm \lambda e^{-|RQ|^{\alpha}}) * (1 + \delta Q)$$

R – radius of a spherical static source λ – chaoticity parameter (0 – coherent source, 1 – chaotic emission) N – normalization factor δ – long-range correlations α – index of stability

Double ratio

• **double ratio** $r_d(Q)$ – an improved correlation function:

$$r_d(Q) = \frac{C_2(Q)^{DATA}}{C_2(Q)^{MC}} \longrightarrow \begin{array}{c} \text{BEC effect not simulated in MC} \end{array}$$

- MC correlation function contains similar pattern of distortions as correlation function for data, therefore constructing double ratio:
 - reduces possible imperfections of the reference sample
 - eliminates second order effects to large extent
 - corrects for long-range correlations (if properly simulated)

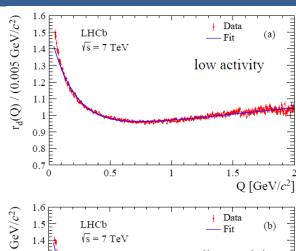
Coulomb correction

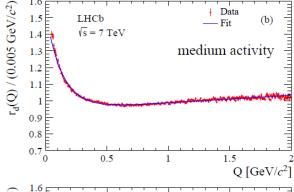
- Coulomb effect is not simulated in MC
- in pp analysis: corrected by applying **Gamov penetration factor** $G_2(Q)$ to the Q distribution for signal pairs in data:

$$G_2(Q) = \frac{2\pi\zeta}{e^{2\pi\zeta}-1}$$
, where $\zeta = \pm \frac{\alpha m}{Q}$

• in pPb analysis: **Bowler-Sinyukov formalism** planned to be used to account for the Coulomb effect

BEC in pp - results (I)


• fits to double ratio with Levy parametrization with $\alpha=1$:


$$C_2(Q) = N(1 \pm \lambda e^{-RQ}) * (1 + \delta Q)$$

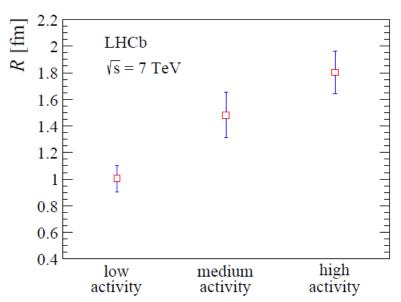

clear enhancement due to BEC effect observed in Q->0

Activity class	<i>R</i> [fm]	λ
low	$1.01 \pm 0.01 \pm 0.10$	0.72 ± 0.01 ± 05
medium	$1.48 \pm 0.02 \pm 0.17$	$0.63 \pm 0.01 \pm 0.05$
high	$1.80 \pm 0.03 \pm 0.16$	0.57 ± 0.01 ± 0.03

Systematic uncertainty (~10%) dominated by generator tunings and pile-up effects.

0.5

JHEP 12 (2017) 025


Q [GeV/ c^2]

BEC in pp - results (II)

Results show a trend compatible with previous observations at LEP and other LHC experiments:

- source size increases with activity
- λ decreases with growing activity

JHEP 12 (2017) 025

R and λ parameters measured in the forward region are slightly lower than results for central rapidity obtained by ATLAS (direct comparison, by extrapolating LHCb N_{ch} to ATLAS acceptance using simulation – see backup)

BEC in pPb - overview

plans

- analysis in 6 N_{ch} bins and (3 N_{ch} + 3 k_T) bins
- use **Levy parametrization** with $\alpha=1$ (for comparison with previous results)
- use τ-model to study interesting effects in the correlation function (oscillations, anticorrelation dip)

status

- advanced: data samples + selection ready
- double ratio constructed for N_{ch} bins, k_T bins optimization in progress
- next step: Coulomb correction + fits

PHYSICAL OUTPUT

- direct comparison between pp/pPb systems at LHCb
- comparison between forward and central rapidity region in pPb
- tests of the **τ-model** in pPb system

Summary

Bose-Einstein correlations studied for same-sign pions in pp @ 7 TeV

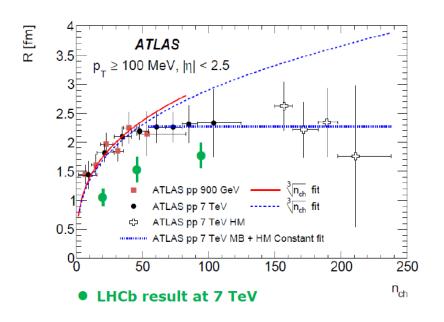
- first measurement in the forward region $2 < \eta < 5$
- observed trends compatible with previous results and predictions
- BEC parameters in the forward region slightly lower wrt central rapidities

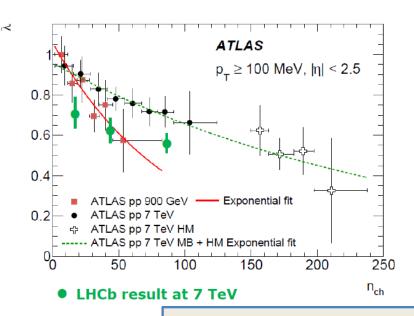
Ongoing analysis for pPb @ 5 TeV

- analysis planned in both N_{ch} and k_T bins
- the τ-model will be used for fits, to study possible oscillations
- planned comparisons between pp/pPb systems and forward/central rapidity

NEW/PLANNED ANALYSES

- 3-body correlations in pp @ 7 TeV (ongoing)
- 3D analysis in pp @ 7 TeV
- BEC study for D mesons
- BEC in PbPb collisions


Thank you for your attention


BEC pp – central VS forward

Unfolded N_{ch} of LHCb (2 < η < 5) at 7 TeV is extrapolated to the ATLAS acceptance($|\eta|$ < 2.5, p_T > 0.1 GeV/c) using simulation (PYTHIA 8):

- R and λ parameters measured in the forward region are slightly lower than results for central rapidity obtained by ATLAS
- planned to check that also in future analyses at LHCb, e.g. in pPb collisions

ATLAS: Eur. Phys. J. C75 (2015) 466

LHCb: JHEP 12 (2017) 025

Offline selection

Single track:

- false isMuon flag
- if tracks share all VELO hits -> keep one with best χ^2
- $2 < \eta < 5$
- track χ^2 < 2.0
- probNN(ghost) < 0.25
- probNN(kaon,proton) < 0.5
- probNN(pion) > 0.65

Pairs with Q<0.05 GeV are rejected (clones and ghosts removal).

BEC pp- systematics

Source	Low activity		Medium activity		High activity	
	$\Delta R \ [\%]$	$\Delta\lambda$ [%]	$\Delta R \ [\%]$	$\Delta\lambda$ [%]	$\Delta R \ [\%]$	$\Delta\lambda$ [%]
Generator tunings	6.6	4.3	8.9	3.5	6.5	1.5
PV multiplicity	5.9	5.8	6.1	4.5	3.9	4.3
PV reconstruction	1.8	0.1	1.4	1.2	0.1	< 0.1
Fake tracks	0.4	1.1	1.7	3.9	1.1	0.8
PID calibration	1.3	0.3	0.8	0.6	2.7	0.9
Requirement on pion PID	2.9	1.8	1.6	0.1	1.3	0.1
Fit range at low- Q	1.2	1.0	1.2	1.5	1.8	2.7
Fit range at high- Q	1.8	0.1	2.1	0.8	2.4	1.4
Total	9.8	7.6	11.4	7.3	8.8	5.6