Search for the QCD critical point at RHIC

Adam Bzdak

AGH University of Science and Technology, Kraków

AGH

AB, V.Koch, N.Strodthoff, PRC 95 (2017) 054906
AB, V.Koch, V.Skokov, EPJC 77 (2017) 288
AB, V.Koch, D.Oliinychenko, J.Steinheimer, PRC 98 (2018) 054901
AB, V.Koch, 1811.04456

Outline:

- introduction
- factorial cumulants, cumulants
- STAR data
- bimodal distribution
- statistics friendly distributions
- summary

What we know about the QCD phase diagram

The rest is everybody's guess.

Usual expectation based on various effective models

On the experimental side all we can do is to measure various fluctuation observables and hope to see some nontrivial energy or/and system-size dependence

```
```

see, e.g.,

```
```

see, e.g.,
Stephanov, Rajagopal, Shuryak, PRL (1998)
Stephanov, Rajagopal, Shuryak, PRL (1998)
Stephanov, PRL (2009)
Stephanov, PRL (2009)
Skokov, Friman, Redlich, PRC (2011)

```
```

Skokov, Friman, Redlich, PRC (2011)

```
```

There are some intriguing results:

STAR, HADES

Higher order cumulants

Proton v_{1} (STAR)

HBT radii (STAR)

NA 49
Intermittency in the transverse momentum phase space

Strongly intensive variables

Poisson distribution

$$
\begin{aligned}
N & =10^{10} \\
p & =10^{-9} \\
\langle n\rangle & =N p=10
\end{aligned}
$$

event \# 1

event \#2 o o o o o o o o o o
$P(n)=$ Poisson if $N \rightarrow \infty, p \rightarrow 0, \quad N p=\langle n\rangle$

Such source (multiplicity distribution) is characterized by All factorial cumulants $\boldsymbol{C}_{\boldsymbol{n}}=\mathbf{0}, n=2,3, \ldots$ ("no correlations")

Multiparticle correlations - factorial cumulants

m particle cluster
Poisson
$\boldsymbol{C}_{2} \neq 0$
$\boldsymbol{C}_{\boldsymbol{k}}=0, k>2$
$C_{2,3, \ldots, m} \neq 0$
$\boldsymbol{C}_{\boldsymbol{k}}=0, k>m$
factorial
cumulants

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left.\frac{d^{k}}{d z^{k}} \ln \left(\sum_{n} P(n) z^{n}\right)\right|_{z=1}
$$

Two-particle correlation function

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+C_{2}\left(y_{1}, y_{2}\right)
$$

Integrating both sides over some bin in rapidity

$$
\langle n(n-1)\rangle=\langle n\rangle^{2}+\boldsymbol{C}_{\mathbf{2}}
$$

$$
\begin{aligned}
\langle n(n-1)\rangle & =\int \rho_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \\
\langle n\rangle & =\int \rho(y) d y
\end{aligned}
$$

factorial cumulant
(integrated correlation function)

$$
\boldsymbol{C}_{2}=\int \boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

Factorial cumulants vs cumulants
factorial
cumulant

$$
\boldsymbol{C}_{\boldsymbol{i}}=\left.\frac{d^{i}}{d z^{i}} \ln \left(\sum_{n} P(n) z^{n}\right)\right|_{z=1}
$$

cumulant

$$
K_{i}=\left.\frac{d^{i}}{d t^{i}} \ln \left(\sum_{n} P(n) e^{t n}\right)\right|_{t=0}
$$

cumulants naturally appear in statistical physics

$$
\ln (Z)=\ln \left(\sum_{i} e^{-\beta\left(E_{i}-\mu N_{i}\right)}\right)
$$

We have

$$
\begin{array}{ll}
K_{2}=\langle N\rangle+C_{2} & \begin{array}{l}
\text { cumulants mix integ. } \\
\text { correlation functions } \\
\text { of different orders }
\end{array} \\
K_{3}=\langle N\rangle+3 C_{2}+C_{3} & \\
K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4} &
\end{array}
$$

$$
\begin{aligned}
& K_{5}=\langle N\rangle+15 C_{2}+25 C_{3}+10 C_{4}+C_{5} \\
& K_{6}=\langle N\rangle+31 C_{2}+90 C_{3}+65 C_{4}+15 C_{5}+C_{6}
\end{aligned}
$$

$\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+\boldsymbol{C}_{2}\left(y_{1}, y_{2}\right)$

$$
\boldsymbol{C}_{2}=\int \boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \quad \text { factorial cumulant }
$$

See, e.g.,
B. Ling, M. Stephanov, PRC 93 (2016) 034915

AB, V. Koch, N. Strodthoff , PRC 95 (2017) 054906
AB, V.Koch, D.Oliinychenko, J.Steinheimer, PRC 98 (2018) 054901

Preliminary STAR data

X.Luo, N.Xu, 1701.02105

my notation
K_{4} / K_{2}

Is proton signal at 7.7 GeV large?
Is physics changing between 7 and 19 GeV ?

Using preliminary STAR data we obtain \boldsymbol{C}_{n}

central signal at 7.7 GeV is driven by large 4-particle correlations

$C_{4}(7.7) \sim 170$
central signal at 19.6 GeV is driven by 2-particle correlations

\boldsymbol{C}_{4} and $\mathbf{6} \boldsymbol{C}_{3}$ cancelation in most central coll.

Baryon conservation + volume fluctuation (minimal model)

- independent baryon stopping (baryon conservation by construction)
- $N_{\text {part }}$ fluctuations (volume fluctuation - VF)

> STAR
> $C_{4} \sim 170$
> $6 C_{3} \sim-60$
> $7 C_{2} \sim-15$
we follow the STAR way (centrality etc.) as closely as possible

AB, V. Koch, V. Skokov, EPJC 77 (2017) 288
See also, P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 960 (2017) 114

Can we describe the STAR data at 7.7 GeV with simple multiplicity distributions?

Bimodal distribution

$$
P(N)=(1-\alpha) P_{(a)}(N)+\alpha P_{(b)}(N)
$$

AB, V. Koch, D. Oliinychenko, J. Steinheimer, PRC 98 (2018) 054901

A finite volume van der Walls model

AB, V. Koch, D. Oliinychenko, J. Steinheimer, PRC 98 (2018) 054901

$$
C_{2}=\alpha(1-\alpha) \bar{N}^{2} \approx \alpha \bar{N}^{2}
$$

$$
C_{3}=-\alpha(1-\alpha)(1-2 \alpha) \bar{N}^{3} \approx-\alpha \bar{N}^{3}
$$

$$
C_{4}=\alpha(1-\alpha)\left(1-6 \alpha+6 \alpha^{2}\right) \bar{N}^{4} \approx \alpha \bar{N}^{4}
$$

$$
\bar{N}=\left\langle N_{(a)}\right\rangle-\left\langle N_{(b)}\right\rangle
$$

$$
\frac{C_{6}}{C_{5}} \approx \frac{C_{5}}{C_{4}} \approx \frac{C_{4}}{C_{3}}=-17 \pm 6
$$

parameter-free prediction at 7.7 GeV $(\alpha \ll 1)$
$C_{5} \approx-2645$,

$$
C_{6} \approx 40900
$$

$$
\text { assuming } C_{4}=170
$$

We can describe the data with $\alpha \approx 0.0033$

$$
\left\langle N_{(a)}\right\rangle \approx 40,\left\langle N_{(b)}\right\rangle \approx 25
$$

Now we can plot $P(N)$

Can we verify the model ($\left.C_{5}, C_{6}, \ldots\right)$ with 144393 events available at STAR?

Statistics hungry distributions (SHD): binomial, Poisson, NBD,...

Histogram of $C_{n}^{(i)} / C_{n}$ based on 144393 events.

Are there statistics friendly distributions (SFD)? Yes.

Histogram of $C_{n}^{(i)} / C_{n}$ based on 144393 events.

It survives when hit with efficiency of 0.65

Our request to STAR.
Measure $C_{5}, C_{6}, C_{7}, C_{8}$ (factorial cumulants) and you should see:

$$
\begin{aligned}
& C_{5} \sim-2650 \\
& C_{6} \sim+40900 \\
& C_{7} \sim-615000 \\
& C_{8} \sim+8520000
\end{aligned}
$$

$$
\text { For Poisson } C_{n}=0
$$

More details in 1811.04456

Conclusions:

Four-proton factorial cumulant (int. correlation function) at 7.7 GeV is surprisingly large. Three orders of magnitude larger than the minimal model.

Volume fluctuation and baryon conservation seem to be irrelevant for C_{3} and C_{4}. C_{2} (and K_{2}) is likely contaminated by background.

Proton clusters?

Bimodal $P(N)$. Parameter-free predictions.
Statistics friendly distributions close to the phase transition?

Backup

Critical point: everybody's guess

Figure 4: Comparison of predictions for the location of the QCD critical point on the phase diagram. Black points are model predictions: NJLa89, NJLb89 - [12], CO94 - [13, 14], INJL98 - [15], RM98 - [16], LSM01, NJL01 - [17], HB02 - [18], CJT02 - [19], 3NJL05 - [20], PNJL06 - [21]. Green points are lattice predictions: LR01, LR04 - [22], LTE03 - [23], LTE04 - [24]. The two dashed lines are parabolas with slopes corresponding to lattice predictions of the slope $d T / d \mu_{B}^{2}$ of the transition line at $\mu_{B}=0[23,25]$. The red circles are locations of the freezeout points for heavy ion collisions at corresponding center of mass energies per nucleon (indicated by labels in GeV) - Section 5 .

Regular cumulants are not as friendly

All of this can be understood

Suppose that we have clusters (distributed according to Poisson) decaying always to 4 protons

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 4!/(4-k)!
$$

mean number
of clusters
for 5-proton clusters:
$C_{k}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 5!/(5-k)!$
$\boldsymbol{C}_{4}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 120$
and $\left\langle N_{\mathrm{cl}}\right\rangle \sim 1$

$$
\boldsymbol{C}_{\mathbf{4}}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 24
$$

To obtain $\boldsymbol{C}_{\mathbf{4}} \approx 170$ we need $\left\langle N_{\mathrm{cl}}\right\rangle \sim 7$, it means 28 protons. STAR sees on average 40 protons in central collisions.

In this model $C_{2}>0$ and $C_{3}>0$ contrary to the STAR data

In what sense "no correlations"?

$P\left(n_{1}, n_{2}\right) \stackrel{?}{=} P\left(n_{1}\right) P\left(n_{2}\right)$
It is true for $P(n)=$ Poisson only
fixed N
finite N
resonances
volume fluctuation

$$
\begin{aligned}
P\left(n_{1}, n_{2}\right) & =P(n) \frac{n!}{n_{1}!n_{2}!}\left(\frac{1}{2}\right)^{n_{1}}\left(\frac{1}{2}\right)^{n_{2}} \\
n & =n_{1}+n_{2}
\end{aligned}
$$

Suppose we have a system with two-particle clusters only

In this case all information is contained in $\langle n\rangle$ and K_{2}. No point to measure $K_{3,4, \ldots}$

$$
\boldsymbol{C}_{\mathbf{2}}=2\left\langle n_{C}\right\rangle \quad \boldsymbol{C}_{\mathbf{3}, \mathbf{4}, \ldots}=0
$$

$$
K_{i}=2^{i}\left\langle n_{C}\right\rangle \quad \text { and for example: } \frac{K_{4}}{K_{2}}=4
$$

looks nontrivial but no new information

Genuine three-particle correlation

$$
\rho_{3}\left(y_{1}, y_{2}, y_{3}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right) \rho\left(y_{3}\right)+\rho\left(y_{1}\right) C_{2}\left(y_{2}, y_{3}\right)+\cdots
$$

three possibilities

$$
+C_{3}\left(y_{1}, y_{2}, y_{3}\right)
$$

Integrating both sides

$$
\langle n(n-1)(n-2)\rangle=\langle n\rangle^{3}+3\langle n\rangle \boldsymbol{C}_{2}+\boldsymbol{C}_{\mathbf{3}}
$$

factorial cumulant
(integrated correlation function)

$$
\boldsymbol{C}_{\mathbf{3}}=\int \boldsymbol{C}_{\mathbf{3}}\left(y_{1}, y_{2}, y_{3}\right) d y_{1} d y_{2} d y_{3}
$$

and analogously for higher-order correlation functions

Comparison of 7.7, 11.5 and 19.6 GeV

