Introduction 000	Results 00000000	Next steps	Summary	References

Finite Volume & Lifetime Effects on Secondary-Particle Spectra in Relativistic Collision

O. Savchuk $^{\rm 1}$ supervised by Prof. D.V. Anchishkin $^{\rm 2,1}$

¹Theoretical Physics dep. Taras Shevchenko National University of Kyiv Kyiv, Ukraine

²Bogolyubov Institute for Theoretical Physics Kyiv, Ukraine

> 3 - 7 December ZIMÁNYI SCHOOL'18

Introduction 000	Results 00000000	Next steps	Summary	References
Outline				

1 Introduction

- Heavy Ion Collision
- Motivation
- Single-particle spectra

2 Results

• Finite Volume and Life-time

3 Next steps

4 Summary

Introduction	Results 00000000	Next steps	Summary	References
Heavy Ion Collision				
 Relation 	vistic Heavy Ion	Collision consist	s of several phase	es.

• We are interested in description of the system created during collision process. Meanwhile, information that we obtain consists just of some observables that need to be treated on the base of our models.

Introduction ○●○	Results 00000000	Next steps	Summary	References
Motivation				

• After chemical freeze-out system of hadrons expands until kinetic freeze-out is reached and then particles propagate freely (mean free path is large).

Motivation

- Investigation of the transverse momentum distribution,
- Study of influence of the finiteness of system volume and life-time on the single-particle spectra,
- Study of influence of interactions on the single-particle spectra.

Introduction ○○●	Results 00000000	Next steps	Summary	References
Single-particle spectra				

- Most models use statistics and thermodynamics without any quantum effects, and provide spectra with Cooper-Frye formalism with parametrization of hydrodynamic flow (Blast-Wave Model) or Non-extensive entropy (Tsallis distribution) which lacks physical evidence.
- This approach indirectly considers hydrodynamic flow, purely quantum, can be extended to describe origins of non-extensive entropy.

ooo Finite Volur	n results vext steps Summary ●00000000 me and Life-time	Kelerenc
Ge	eneral formula: the spectrum is determined by the lesser Green's nction ${\cal G}^<(\omega,{f k})$	
	$2E_krac{d^3N}{dk^3} = V\int rac{d\omega}{2\pi} \left(E_k+\omega ight)^2 iG^<(\omega,{f k})$	
Fi	nite life-time: Breit-Wigner(1)	
	$rac{d^3N}{dk^3} = V \int_0^\infty rac{ds}{\pi} \; rac{m\gamma}{(s-E_k^2)^2+(m\gamma)^2} f_{ m BE}(\sqrt{s})$	
Fi	nite life-time: Breit-Wigner(2)	
E _k	$\frac{d^3N}{dk^3} = V \int_0^\infty \frac{dk^0}{\pi} \left(E_k^2 + k_0^2 \right) \frac{\gamma k^0}{\left(k_0^2 - E_k^2 - \frac{1}{4}\gamma^2 \right)^2 + (k^0\gamma)^2} f_{\rm BE}(k^0\gamma)^2$)

Introduction	Results	Next steps	Summary	References
000	00000000			
Finite Volume and Life-time				

Figure 1: Finite life-time of the system versus finite volume for proton-proton collisions. All curves with T = 160 MeV. Breit-Wigner (1) and Breit-Wigner (2) with $\gamma = 63$ MeV. Finite Volume with R = 1 fm, L = 1.5 fm. Exp. data from [2]

Introduction	Results	Next steps	Summary	References
	0000000			
Finite Volume and Life-time				

Figure 2: Account for finite life-time of the system. For high p_t the spectra converts to power law and the difference between energy levels decreases with increase of γ .

Figure 3: Account for finite volume of the system for proton-proton collisions. Exp. data from [2]

Introduction	Results	Next steps	Summary	References
	00000000			
Finite Volume and Life-time				

Figure 4: Finite volume of the system versus finite life-time for Pb+Pb collisions. All curves with T = 300 MeV. Breit-Wigner(1) and Breit-Wigner(2) with $\gamma = 170$ MeV. Finite Volume with R = 9 fm, L = 13.5 fm. Exp. data from [1]

Introduction	Results	Next steps	Summary	References
	000000000			
Finite Volume and Life-time				

Figure 5: Finite Volume Model for PbPb data. Exp. data from [1]

Figure 6: Combined Model with R = 7 fm, L = 10.5 fm, $\gamma = 170$ MeV. Exp. data from [1]

Introduction	Results	Next steps	Summary	References
	000000000			
Finite Volume and Life-time				

Figure 7: Thermal Model versus Finite Volume Model for PbPb data (small p_t). Thermal Model with T = 166 MeV. Finite Volume Model with T = 132 MeV, R = 2.5 fm, L = 3.75 fm. Exp. data from [3]

Introduction	Results	Next steps	Summary	References
	00000000			
Finite Volume and Life-time				

Figure 8: Comparison of two cases of colliding systems at $\sqrt{s_{\rm NN}} = 2.76$ TeV, p-p (left panel) and Pb-Pb (right panel). For p-p: All curves with T = 160 MeV, finite volume R = 1 fm, L = 1.5 fm. For Pb-Pb: All curves at T = 300 MeV, finite volume and combined models with R = 7 fm, L = 10.5 fm, $\gamma = 170$ MeV. Exp. data from [1, 2]

Introduction 000	Results 00000000	Next steps	Summary	References

Next steps

- Influence of interactions.
- Account for the non-equilibrium effects and expansion.
- Account for the resonance decays and presence of many-component systems.

Introduction 000	Results 00000000	Next steps	Summary	References

So at the end we have

- Single particle pionic spectrum derived from different models, physical explanation of the shape changes by different phenomena.
- Acquired spectrum provides better explanation in comparison with Bose-Einstein distribution function, but fails to recreate right power law in high momentum part of the spectrum.
- We also conclude that spectral function should decay with the power of 7 at least.
- Some experimental data provided for comparison of different models with it and between.
- Spectrum of Heavy Ion and proton collision compared to see what differences can be calculated from models at hand.

- Betty Bezverkhny Abelev et al. "Neutral pion production at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ ". In: *Eur. Phys. J.* C74.10 (2014), p. 3108. DOI: 10.1140/epjc/s10052-014-3108-8. arXiv: 1405.3794 [nucl-ex].
- Shreyasi Acharya et al. "Production of π⁰ and η mesons up to high transverse momentum in pp collisions at 2.76 TeV".
 In: *Eur. Phys. J.* C77.5 (2017). [Eur. Phys. J.C77,no.9,586(2017)], p. 339. DOI: 10.1140/epjc/s10052-017-5144-7,10.1140/epjc/s10052-017-4890-x. arXiv: 1702.00917 [hep-ex].
 - C. Alt et al. "Pion and kaon production in central Pb + Pb collisions at 20-A and 30-A-GeV: Evidence for the onset of deconfinement". In: *Phys. Rev.* C77 (2008), p. 024903. DOI: 10.1103/PhysRevC.77.024903. arXiv: 0710.0118 [nucl-ex].

Introduction 000	Results 00000000	Next steps	Summary	References

Thank you for attention!

Acknowledgements

The work was supported by the Ukraine-Hungary project "Kinetic and critical phenomena in nonequilibrium quantum systems in finite space-time regions".