Highlights from NA61/SHINE: proton intermittency analysis

Daria Prokhorova for NA61/SHINE Collaboration Laboratory of Ultra-High Energy Physics, St. Petersburg State University

ZIMÁNYI SCHOOL'18 WINTER WORKSHOP ON HEAVY ION PHYSICS 6 December 2018

• NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a particle physics **fixed-target** experiment at CERN SPS

- NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a particle physics **fixed-target** experiment at CERN SPS
- Scan in beam momenta (13A 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb)

Schematic picture of the NA61/SHINE experiment NA61 JINST 9: 06005

- NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a particle physics **fixed-target** experiment at CERN SPS
- Scan in beam momenta $(13A 150/158A \text{ GeV}/c)$ and system size $(p+p)$, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb)
- Large acceptance hadron spectrometer full coverage in the forward hemisphere (down to $p_T = 0$ GeV/*c*)

Schematic picture of the NA61/SHINE experiment NA61 JINST 9: 06005

Event browser http://shine3d.web.cern.ch/shine3d/ 2/15

Daria Prokhorova for NA61/SHINE Collaboration 3-7 December 2018, Zimanyi School, Budapest

- NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a particle physics **fixed-target** experiment at CERN SPS
- Scan in beam momenta $(13A 150/158A \text{ GeV}/c)$ and system size $(p+p)$, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb)
- **Large acceptance** hadron spectrometer full coverage in the forward hemisphere (down to $p_T = 0$ GeV/*c*)

Schematic picture of the NA61/SHINE experiment NA61 JINST 9: 06005

Centrality selection in A+A collisions by measuring of forward energy with **Projectile Spectator Detector (PSD)**

Event browser http://shine3d.web.cern.ch/shine3d/ 2/15

Daria Prokhorova for NA61/SHINE Collaboration 3-7 December 2018, Zimanyi School, Budapest

Baryo-chemical potential

- study the properties of the onset of deconfinement
- search for the critical point (CP) of strongly interacting matter

Sketch of the phase diagram of strongly interacting matter **3/15**

Baryo-chemical potential

• study the properties of the onset of deconfinement

• search for the critical point (CP) of strongly interacting matter

Data taking schedule

Sketch of the phase diagram of strongly interacting matter

Baryo-chemical potential

• study the properties of the onset of deconfinement

• search for the critical point (CP) of strongly interacting matter

Data taking schedule Sketch of the expected «critical hill»

Sketch of the phase diagram of strongly interacting matter

Common knowledge: **critical opalescence**

[T. Csorgo PoS HIGH-pTLHC08:027, 2008]

3-7 December 2018, Zimanyi School, Budapest

Common knowledge: **critical opalescence**

[T. Csorgo PoS HIGH-pTLHC08:027, 2008]

• Shine light on the liquid with wave-length being comparable to correlation length

Common knowledge: **critical opalescence**

[T. Csorgo PoS HIGH-pTLHC08:027, 2008]

- Shine light on the liquid with wave-length being comparable to correlation length
- Change the Temperature

Common knowledge: **critical opalescence**

[T. Csorgo PoS HIGH-pTLHC08:027, 2008]

- Shine light on the liquid with wave-length being comparable to correlation length
- Change the Temperature
- Correlation length diverges as approaching critical point light beam becomes more and more scattered on the significant density fluctuations $-$ fluid turns to be more and more opaque

Common knowledge: **critical opalescence**

[T. Csorgo PoS HIGH-pTLHC08:027, 2008]

- Shine light on the liquid with wave-length being comparable to correlation length
- Change the Temperature
- Correlation length diverges as approaching critical point light beam becomes more and more scattered on the significant density fluctuations $-$ fluid turns to be more and more opaque

Finally, we see a signature of a second order phase transitions and the **critical point is reached**

Common knowledge: **critical opalescence**

3-7 December 2018, Zimanyi School, Budapest

Critical point and Intermittency

Experimental observation by fluctuations with a **power law** dependence on the phase space resolution

Critical point and Intermittency

Experimental observation by fluctuations with a **power law** dependence on the phase space resolution

J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869 A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438

The order parameters of QCD are the chiral condensate and the net-baryon density. Critical fluctuations show up in fluctuations of the net-baryon density and can be observed by intermittent behavior of the net-proton or proton density

[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Critical point and Intermittency

Experimental observation by fluctuations with a **power law** dependence on the phase space resolution

J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869 A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438

The order parameters of QCD are the chiral condensate and the net-baryon density. Critical fluctuations show up in fluctuations of the net-baryon density and can be observed by intermittent behavior of the net-proton or proton density

[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

In this talk I will present:

- theoretical aspects formulated by **Fotios Diakonos** at NA61/SHINE theory virtual meetings, can be found also at https://indico.cern.ch/event/760216/contributions/3154442/attachments/1722303/2781998/Diakonos_cpod2018v2.pdf
- experimental approach and results by **Nikolaos Davis** in collaboration with **Nikolaos Antoniou & Fotios Diakonos** for the NA61/SHINE collaboration based on NA61/SHINE and NA49 data with full information being available at:

https://indico.cern.ch/event/760216/contributions/3153684/attachments/1721653/2779754/Davis_CPOD2018.pdf

QCD vacuum is chemically and thermally excited **Momentum** of produced particles is our tool instead of scattered photons momentum in ordinary QED matter. We can look at produced protons and pions

QCD vacuum is chemically and thermally excited **Momentum of produced particles** is our tool instead of scattered photons momentum in ordinary QED matter. We can look at produced protons and pions

Our system has a finite size L

 Q – any thermodynamic quantity f – scaling function ζ_{∞} - correlation length

This introduces an additional length scale **L**, with exponent **p** describing the **scaling** of thermodynamic quantities for finite systems:

$$
Q_L(t_\pm) = L^p f_\pm (L/\xi_\infty(t_\pm)) \qquad;\qquad t = \pm \frac{T-T_c}{\mathcal{T}} \quad \text{reduced temperature}
$$

QCD vacuum is chemically and thermally excited **Momentum of produced particles** is our tool instead of scattered photons momentum in ordinary QED matter. We can look at produced protons and pions

Our system has a finite size L

This introduces an additional length scale **L**, with exponent **p** describing the scaling of thermodynamic quantities for finite systems:

 Q – any thermodynamic quantity f – scaling function ζ_{∞} - correlation length

 $Q_L(t_{\pm}) = L^p f_{\pm}(L/\xi_{\infty}(t_{\pm}))$; $t = \pm \frac{T - T_c}{T}$ reduced temperature

Hence, power-law $\langle n_B(\mathbf{r_1})n_B(\mathbf{r_2})\rangle \sim |\mathbf{r_1}-\mathbf{r_2}|^{-(d-d_F)}$ behavior in configuration space near the Critical Point could be observed for distances of the order of the correlation length, and therefore larger than system size L: $|\mathbf{r_1}-\mathbf{r_2}| \approx \xi_{\infty} \gtrsim L$ - Finite Size Scaling (FSS) regime

QCD vacuum is chemically and thermally excited **Momentum of produced particles** is our tool instead of scattered photons momentum in ordinary QED matter. We can look at produced protons and pions

Our system has a finite size L

This introduces an additional length scale **L**, with exponent **p** describing the scaling of thermodynamic quantities for finite systems:

 Q – any thermodynamic quantity f – scaling function ζ_{∞} - correlation length

 $Q_L(t_{\pm}) = L^p f_{\pm}(L/\xi_{\infty}(t_{\pm}))$; $t = \pm \frac{T - T_c}{T}$ reduced temperature

Hence, power-law $\langle n_B(r_1)n_B(r_2)\rangle\sim |r_1-r_2|^{-(d-d_F)}$ abehavior in configuration space near the Critical Point could be observed for distances of the order of the correlation length, and therefore larger than system size L: $|\mathbf{r_1}-\mathbf{r_2}| \approx \xi_{\infty} \gtrsim L$ - Finite Size Scaling (FSS) regime

Of course, we have a **cutoff on L in the real system** and after performing Fourier transform:

$$
\lim_{\mathbf{k_1}\rightarrow\mathbf{k_2}}\langle n_B(\mathbf{k_1})n_B(\mathbf{k_2})\rangle\sim|\mathbf{k_1}-\mathbf{k_2}|^{-d_F}
$$

QCD vacuum is chemically and thermally excited **Momentum of produced particles** is our tool instead of scattered photons momentum in ordinary QED matter. We can look at produced protons and pions

Our system has a finite size L

This introduces an additional length scale **L**, with exponent **p** describing the **scaling** of thermodynamic quantities for finite systems:

 Q – any thermodynamic quantity f – scaling function ζ_{∞} - correlation length

$$
Q_L(t_\pm) = L^p f_\pm (L/\xi_\infty(t_\pm)) \qquad;\qquad t=\pm \frac{T-T_c}{\mathcal{T}} \quad \text{reduced temperature}
$$

Hence, power-law $\langle n_B(\mathbf{r_1})n_B(\mathbf{r_2})\rangle \sim |\mathbf{r_1}-\mathbf{r_2}|^{-(d-d_F)}$ **long-range correlations in r-space** behavior in configuration space near the Critical Point could be observed for distances of the order of the correlation length, and therefore larger than system size L: $|\mathbf{r_1}-\mathbf{r_2}| \approx \xi_{\infty} \gtrsim L$ - Finite Size Scaling (FSS) regime

Of course, we have a **cutoff on L in the real system** and after performing Fourier transform:

$$
\lim_{k_1\to k_2}\langle n_B({\bf k_1})n_B({\bf k_2})\rangle\sim |{\bf k_1}-{\bf k_2}|^{-d_F}\quad \text{singularity in momentum space}
$$

6/15 The power-law decay in r-space leads to power-law singularity of the density-density correlation function in p-space

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$.

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left|d_{F,\perp}=\frac{2}{3}d_F\approx\frac{5}{3}\right|$ And after Fourier: $\left|\tilde{d}_{F,\perp}=2-d_{F,\perp}\approx\frac{1}{3}\right|$

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

7/15

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left| d_{F,\perp} = \frac{2}{3}d_F \approx \frac{5}{3} \right|$ And after Fourier: $\left| \tilde{d}_{F,\perp} = 2 - d_{F,\perp} \approx \frac{1}{3} \right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

7/15

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left|d_{F,\perp}=\frac{2}{3}d_F\approx\frac{5}{3}\right|$ And after Fourier: $\left|\tilde{d}_{F,\perp}=2-d_{F,\perp}\approx\frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

Sigma-field

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

7/15

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left|d_{F,\perp}=\frac{2}{3}d_F\approx\frac{5}{3}\right|$ And after Fourier: $\left|\tilde{d}_{F,\perp}=2-d_{F,\perp}\approx\frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

or

Sigma-field Net-baryon density Net-baryon density

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

7/15

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left|d_{F,\perp}=\frac{2}{3}d_F\approx\frac{5}{3}\right|$ And after Fourier: $\left|\tilde{d}_{F,\perp}=2-d_{F,\perp}\approx\frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

critical pions

Sigma-field or or **Net-baryon density**

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

7/15

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left| d_{F,\perp}=\frac{2}{3}d_F\approx \frac{5}{3}\right|$ And after Fourier: $\left| \tilde{d}_{F,\perp}=2-d_{F,\perp}\approx \frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

critical pions

Sigma-field or or **Net-baryon density**

Pro: large statistics

Contra: large combinatorial background of non-critical pions; fluctuations might wash-out quickly due to pions being a "fast component"

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

7/15

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left| d_{F,\perp}=\frac{2}{3}d_F\approx \frac{5}{3}\right|$ And after Fourier: $\left| \tilde{d}_{F,\perp}=2-d_{F,\perp}\approx \frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

critical pions

Sigma-field only protons also carry **all** information about criticality [Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Pro: large statistics

Contra: large combinatorial background of non-critical pions; fluctuations might wash-out quickly due to pions being a "fast component"

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left|d_{F,\perp}=\frac{2}{3}d_F\approx\frac{5}{3}\right|$ And after Fourier: $\left|\tilde{d}_{F,\perp}=2-d_{F,\perp}\approx\frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

critical pions

Sigma-field or or **proton density**

Pro: large statistics

Contra: large combinatorial background of non-critical pions; fluctuations might wash-out quickly due to pions being a "fast component"
Critical behavior: QCD vacuum

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left| d_{F,\perp}=\frac{2}{3}d_F\approx \frac{5}{3}\right|$ And after Fourier: $\left| \tilde{d}_{F,\perp}=2-d_{F,\perp}\approx \frac{1}{3}\right|$

What is our **order parameter**? (density fluctuations in case of critical opalescence)

critical pions

Sigma-field or or **proton density**

Pro: large statistics

Contra: large combinatorial background of non-critical pions; fluctuations might wash-out quickly due to pions being a "fast component"

Daria Prokhorova for NA61/SHINE Collaboration

7/15 Pro: measurable and critical fluctuations might be observed due to protons being a "slow component" **Contra:** small statistics

Critical behavior: QCD vacuum

FSS: $n_B \sim L^{-\beta/\nu} \Rightarrow d_F = d - \frac{\beta}{\nu}$. Universality class: 3d-Ising, then critical exponents $\beta \approx \frac{1}{3}$, $\nu \approx \frac{2}{3}$

Fractal dimension:

Possible representation of a phase-space: **transverse** \cdot **longitudinal** = $p_T \cdot$ rapidity It is desirable to work at one time (thermal equilibrium demand), however, rapidity mixes time and space

> [N.G. Antoniou, N. Davis and F.K. Diakonos PRC 93, 014908 (2016)] [E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996)]

> > will perform analysis in **transverse momentum space**

Fractal dimension in transverse plane: $\left|d_{F,\perp}=\frac{2}{3}d_F\approx\frac{5}{3}\right|$ And after Fourier: $\left|\tilde{d}_{F,\perp}=2-d_{F,\perp}\approx\frac{1}{3}\right|$

Pro: large statistics

Contra: large combinatorial background of non-critical pions; fluctuations might wash-out quickly due to pions being a "fast component"

7/15 Pro: measurable and critical fluctuations might be observed due to protons being a "slow component" **Contra:** small statistics

Daria Prokhorova for NA61/SHINE Collaboration

Experimental observation of local, **power-law** distributed fluctuations

[N. Davis, CPOD 2018 talk] 8/15

Daria Prokhorova for NA61/SHINE Collaboration

Experimental observation of local, **power-law** distributed fluctuations

J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869 A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438

Intermittency in transverse momentum space (can choose protons)

[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Experimental observation of local, **power-law** distributed fluctuations

J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869 A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438

Intermittency in transverse momentum space (can choose **protons**)

[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Theoretical predictions in slide 7 apply to the **mid-rapidity region**

Experimental observation of local, **power-law** distributed fluctuations

J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869 A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438

Intermittency in transverse momentum space (can choose protons)

[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Theoretical predictions in slide 7 apply to the **mid-rapidity region**

Approach:

Transverse momentum space is partitioned into M² cells

Experimental observation of local, **power-law** distributed fluctuations

J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869 A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438

Intermittency in transverse momentum space (can choose **protons**)

[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Theoretical predictions in slide 7 apply to the **mid-rapidity region**

Approach:

- Transverse momentum space is partitioned into **M²** cells
- Calculate second factorial moments $F_2(M)$ as a function of cell size \Leftrightarrow number of cells M

$$
F_2(M) \equiv \frac{\left\langle \frac{1}{M^2} \sum_{i=1}^{M^2} n_i (n_i - 1) \right\rangle}{\left\langle \frac{1}{M^2} \sum_{i=1}^{M^2} n_i \right\rangle^2}
$$

Background of non-critical proton pairs must be subtracted at the level of factorial moments in order to eliminate trivial (baseline) and non-critical correlations (with a characteristic length scale, that do not scale with bin size)

Background of non-critical proton pairs must be subtracted at the level of factorial moments in order to eliminate trivial (baseline) and non-critical correlations (with a characteristic length scale, that do not scale with bin size)

For $\lambda(M) \lesssim 1$ two approximations can be applied:

1. Cross term can be neglected [Antoniou, Diakonos, Kapoyannis and Kousouris, PRL. 97, 032002 (2006).]

2. Non-critical background moments can be approximated by (uncorrelated) mixed event moments:

Background of non-critical proton pairs must be subtracted at the level of factorial moments in order to eliminate trivial (baseline) and non-critical correlations (with a characteristic length scale, that do not scale with bin size)

- 1. Cross term can be neglected [Antoniou, Diakonos, Kapoyannis and Kousouris, PRL. 97, 032002 (2006).]
- 2. Non-critical background moments can be approximated by (uncorrelated) mixed event moments:

Background of non-critical proton pairs must be subtracted at the level of factorial moments in order to eliminate trivial (baseline) and non-critical correlations (with a characteristic length scale, that do not scale with bin size)

For $\lambda(M) \lesssim 1$ two approximations can be applied:

1. Cross term can be neglected [Antoniou, Diakonos, Kapoyannis and Kousouris, PRL. 97, 032002 (2006).]

2. Non-critical background moments can be approximated by (uncorrelated) mixed event moments:

$$
\Delta F_2(M) \simeq \Delta F_2^{(e)}(M) \equiv F_2^{\text{data}}(M) - F_2^{\text{mix}}(M)
$$

Background of non-critical proton pairs must be subtracted at the level of factorial moments in order to eliminate trivial (baseline) and non-critical correlations (with a characteristic length scale, that do not scale with bin size)

For $\lambda(M) \lesssim 1$ two approximations can be applied:

- 1. Cross term can be neglected [Antoniou, Diakonos, Kapoyannis and Kousouris, PRL. 97, 032002 (2006).]
- 2. Non-critical background moments can be approximated by (uncorrelated) mixed event moments:

$$
\Delta F_2(M) \simeq \Delta F_2^{(e)}(M) \equiv F_2^{\text{data}}(M) - F_2^{\text{mix}}(M)
$$

And for a critical system Δ **F₂(M) scales** with cell size (number of cells, M) as:

$$
\Delta F_2(M) \sim \left(M^2\right)^{\varphi_2}
$$

Background of non-critical proton pairs must be subtracted at the level of factorial moments in order to eliminate trivial (baseline) and non-critical correlations (with a characteristic length scale, that do not scale with bin size)

For $\lambda(M) \lesssim 1$ two approximations can be applied:

1. Cross term can be neglected [Antoniou, Diakonos, Kapoyannis and Kousouris, PRL. 97, 032002 (2006).] 2. Non-critical background moments can be approximated by (uncorrelated) mixed

event moments:

$$
\Delta F_2(M) \simeq \Delta F_2^{(e)}(M) \equiv F_2^{\text{data}}(M) - F_2^{\text{mix}}(M)
$$

And for a critical system Δ**F₂(M) scales** with cell size (number of cells, M) as:

one can obtain **intermittency critical index** in the model independent way: $\phi_2 = 1 - \frac{d_{F,\perp}}{2} \approx \frac{5}{6}$ <a> 3d-Ising effective action

$$
\Delta F_2(M) \sim \left(M^2\right)^{\varphi_2}
$$

Daria Prokhorova for NA61/SHINE Collaboration

3-7 December 2018, Zimanyi School, Budapest

[N. Davis, CPOD 2018 talk]

3-7 December 2018, Zimanyi School, Budapest

[N. Davis, CPOD 2018 talk]

3-7 December 2018, Zimanyi School, Budapest

Daria Prokhorova for NA61/SHINE Collaboration

3-7 December 2018, Zimanyi School, Budapest

Daria Prokhorova for NA61/SHINE Collaboration

Daria Prokhorova for NA61/SHINE Collaboration

Daria Prokhorova for NA61/SHINE Collaboration

Daria Prokhorova for NA61/SHINE Collaboration

³⁻⁷ December 2018, Zimanyi School, Budapest

[N. Davis, CPOD 2018 talk]

11/15

Daria Prokhorova for NA61/SHINE Collaboration

Be+Be

 $\overline{4}$

[[]N. Davis, CPOD 2018 talk]

11/15

Daria Prokhorova for NA61/SHINE Collaboration

3-7 December 2018, Zimanyi School, Budapest

Ar+Sc

NA61/SHINE preliminary

[[]N. Davis, CPOD 2018 talk]

What are the **intermittency indexes** for these systems?

[N. Davis, CPOD 2018 talk]

11/15

Daria Prokhorova for NA61/SHINE Collaboration

Intermittency index ϕ_2 for Ar+Sc at 150A GeV/*c* (80, 85 and 90% purity selection for protons)

 $\mathcal{P}_p = p/(\pi + K + p + e)$

Daria Prokhorova for NA61/SHINE Collaboration

3-7 December 2018, Zimanyi School, Budapest

Intermittency index ϕ_2 for Ar+Sc at 150A GeV/*c* (80, 85 and 90% purity selection for protons)

 $\mathcal{P}_p = p/(\pi + K + p + e)$

References:

1. Sigmas(neutral isoscalar dipions): [N. G. Antoniou et al, Nucl. Phys. A 693, 799 (2001)]

 ϕ_2 = 2/3 (0.66..) **theory**

[N. Davis, CPOD 2018 talk]

Intermittency index ϕ_2 for Ar+Sc at 150A GeV/c (80, 85 and 90% purity selection for protons)

 $\mathcal{P}_p = p/(\pi + K + p + e)$

References:

1. Sigmas(neutral isoscalar dipions): [N. G. Antoniou et al, Nucl. Phys. A 693, 799 (2001)]

 ϕ_2 = 2/3 (0.66..) **theory**

2. Net baryons(protons):

[N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis, K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]

 ϕ_2 = 5/6 (0.833..) **theory**

Daria Prokhorova for NA61/SHINE Collaboration

3-7 December 2018, Zimanyi School, Budapest

Intermittency index ϕ_2 for Ar+Sc at 150A GeV/c (80, 85 and 90% purity selection for protons)

 $\mathcal{P}_p = p/(\pi + K + p + e)$

References:

1. Sigmas(neutral isoscalar dipions): [N. G. Antoniou et al, Nucl. Phys. A 693, 799 (2001)]

 ϕ_2 = 2/3 (0.66..) **theory**

2. Net baryons(protons):

[N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis, K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]

ϕ_2 = 5/6 (0.833..) **theory**

3. Estimated intermittency index for for "Si"+Si at 158A GeV/*c* [T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]

 ϕ_2 = 0.96+0.38(stat.) \pm 0.16(syst.) **experiment (NA49)**

[N. Davis, CPOD 2018 talk]

Intermittency index ϕ_2 for Ar+Sc at 150A GeV/c (80, 85 and 90% purity selection for protons)

 $\mathcal{P}_p = p/(\pi + K + p + e)$

References:

1. Sigmas(neutral isoscalar dipions): [N. G. Antoniou et al, Nucl. Phys. A 693, 799 (2001)]

 ϕ_2 = 2/3 (0.66..) **theory**

2. Net baryons(protons): [N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis, K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]

 ϕ_2 = 5/6 (0.833..) **theory**

3d-Ising effective action

3. Estimated intermittency index for for "Si"+Si at 158A GeV/*c* [T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]

 ϕ_2 = 0.96+0.38(stat.) \pm 0.16(syst.) **experiment (NA49)**

12/15

[N. Davis, CPOD 2018 talk]

Intermittency index: NA49 and NA61/SHINE

Intermittency index ϕ_2 for A+A at 150/158A GeV/*c*

[[]M. Gazdzicki, indico.cern.ch]

References:

1. Sigmas(neutral isoscalar dipions):

[N. G. Antoniou et al, Nucl. Phys. A 693, 799 (2001)]

ϕ_2 = 2/3 (0.66..) **theory**

2. Net baryons(protons): [N. G. Antoniou, F. K. Diakonos, A. S. Kapoyannis, K. S. Kousouris, Phys. Rev. Lett. 97, 032002 (2006)]

 ϕ_2 = 5/6 (0.833..) **theory**

3d-Ising effective action

3. Estimated intermittency index for for "Si"+Si at 158A GeV/*c* [T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]

φ2 = 0.96+0.38(stat.) ± 0.16(syst.) **experiment (NA49)**

• Indication of intermittency effect in middle-central NA61/SHINE Ar+Sc collisions at 150A GeV/c, which is also seen in "Si"+Si collisions (NA49) at 158A GeV/c

- Indication of intermittency effect in middle-central NA61/SHINE **Ar+Sc collisions at 150***A* **GeV/***c***,** which is also seen in "Si"+Si collisions (NA49) at 158A GeV/c
- No observed power-law behavior for "C"+C, Pb+Pb (NA49) and Be+Be (NA61/SHINE) systems

- Indication of intermittency effect in middle-central NA61/SHINE **Ar+Sc collisions at 150***A* **GeV/***c,* which is also seen in "Si"+Si collisions (NA49) at 158A GeV/c
- No observed power-law behavior for "C"+C, Pb+Pb (NA49) and Be+Be (NA61/SHINE) systems
- Effect in Ar+Sc collisions at 150A GeV/*c* increases with increasing of proton purity selection (up to 90% **purity)**

- Indication of intermittency effect in middle-central NA61/SHINE **Ar+Sc collisions at 150***A* **GeV/***c,* which is also seen in "Si"+Si collisions (NA49) at 158A GeV/*c*
- No observed power-law behavior for "C"+C, Pb+Pb (NA49) and Be+Be (NA61/SHINE) systems
- **Effect in Ar+Sc collisions at 150A GeV/c** increases with increasing of proton purity selection (up to 90% **purity)**
- Effect in Ar+Sc collisions at 150A GeV/*c* shows centrality dependence possibly due to the change of baryochemical potential and the small region of criticality in the phase diagram

- Indication of intermittency effect in middle-central NA61/SHINE **Ar+Sc collisions at 150***A* **GeV/***c,* which is also seen in "Si"+Si collisions (NA49) at 158A GeV/*c*
- No observed power-law behavior for "C"+C, Pb+Pb (NA49) and Be+Be (NA61/SHINE) systems
- **Effect in Ar+Sc collisions at 150A GeV/c** increases with increasing of proton purity selection (up to 90% **purity)**
- Effect in Ar+Sc collisions at 150A GeV/*c* shows centrality dependence possibly due to the change of baryochemical potential and the small region of criticality in the phase diagram
- **EPOS1.99** does not reproduce observed effect

- Indication of intermittency effect in middle-central NA61/SHINE **Ar+Sc collisions at 150***A* **GeV/***c,* which is also seen in "Si"+Si collisions (NA49) at 158A GeV/*c*
- No observed power-law behavior for "C"+C, Pb+Pb (NA49) and Be+Be (NA61/SHINE) systems
- **Effect in Ar+Sc collisions at 150A GeV/c** increases with increasing of proton purity selection (up to 90% **purity)**
- Effect in Ar+Sc collisions at 150A GeV/*c* shows centrality dependence possibly due to the change of baryochemical potential and the small region of criticality in the phase diagram
- **EPOS1.99** does not reproduce observed effect

Expanding the analysis to other NA61/SHINE systems (Xe+La, Pb+Pb) and SPS energies (Ar+Sc) in order to obtain reliable interpretation of **the observed intermittency signal in terms of the critical point**
Summary and outlook

- Indication of intermittency effect in middle-central NA61/SHINE **Ar+Sc collisions at 150***A* **GeV/***c,* which is also seen in "Si"+Si collisions (NA49) at 158A GeV/*c*
- No observed power-law behavior for "C"+C, Pb+Pb (NA49) and Be+Be (NA61/SHINE) systems
- **Effect in Ar+Sc collisions at 150A GeV/c** increases with increasing of proton purity selection (up to 90% **purity)**
- Effect in Ar+Sc collisions at 150A GeV/*c* shows centrality dependence possibly due to the change of baryochemical potential and the small region of criticality in the phase diagram
- **EPOS1.99** does not reproduce observed effect

Expanding the analysis to other NA61/SHINE systems (Xe+La, Pb+Pb) and SPS energies (Ar+Sc) in order to obtain reliable interpretation of the observed intermittency signal in terms of the critical point

14/15

Stay tuned and have a SHINY day!

