
A HIGH-LEVEL PUBLICATION
INTERFACE FOR CERNVM-FS

RADU POPESCU

MOTIVATION

• The CernVM-FS server tools offer low-level primitives, do
not cover publication workflow

• Using multiple publishers (release managers) comes with
added complexity

• Any higher-level tooling is project (user) specific, leading
to duplication

• There is interest in a repository API (get status of specific
publication, check replication status etc.)

�2

OBJECTIVES

• Put together a set of generic tools to manage publishing to
CernVM-FS, offering a higher-level abstraction based on
publication jobs

• Try to encapsulate the publishing system (user shouldn’t
need to know what is inside)

• Minimise amount of extra infrastructure required (ideally no
new VMs)

• Should be easy to integrate with existing setups

�3

Draw heavily from LHCb’s nightly build publishing system

ANATOMY OF A CVMFS PUBLICATION

�4

Login to release manager # ssh lxcvmfs93.cern.ch

Open a transaction # cvmfs_server transaction
sft.cern.ch/some/path

Add, remove, or modify files # cp /some/files /cvmfs/sft.cern.ch/
some/path

Run some touch-up scripts # /cvmfs/sft.cern.ch/post-install.sh

On success, commit the
transaction # cvmfs_server publish sft.cern.ch

On error, abort the
transaction # cvmfs_server abort sft.cern.ch

JOB DESCRIPTION

At minimum, we need:

• Repository

• Subpath

• Payload (URL)

• Script

�5

JOB QUEUE

PUBLISHING SYSTEM V1

CONCEPTUALLY…

�6

JOB 2
JOB 3
JOB 4

JOB 1

PUBLISHER CVMFS RELEASE
MANAGER

PUBLISHING SYSTEM V1

IMPLEMENTATION

�7

RABBITMQ

PUBLISHER CVMFS RELEASE
MANAGER

NEW JOBS
AMQP AMQP

PUBLICATION EXCHANGE SUBSCRIPTION

ADD UUID TO JOB DESCRIPTION

• Repository

• Subpath

• Payload (URL)

• Script

• UUID (ex: e7b67a20-f61d-11e8-a00e-7200045cde30)

�8

PUBLISHING SYSTEM V2

WAITING FOR PUBLISHING TO FINISH?

�9

RABBITMQ

PUBLISHER CVMFS RELEASE
MANAGER

NEW JOBS
AMQP AMQP

FINISHED JOBS

PUBLICATION EXCHANGE SUBSCRIPTION

PUBLISHING SYSTEM V2

MULTIPLE RELEASE MANAGERS

�10

RABBITMQ

PUBLISHER CVMFS RELEASE
MANAGER

NEW JOBS
AMQP

AMQP

FINISHED JOBS

PUBLICATION EXCHANGE SUBSCRIPTION

CVMFS RELEASE
MANAGER

CVMFS RELEASE
MANAGER

DEPTH OF THE LEASE PATH

• Taking a lease too high in the repository is bad for
parallelism

�11

DEPTH OF THE LEASE PATH (EXAMPLE)

A typical publication in sft.cern.ch:

• Publish a number of packages under:  
lcg/releases/<RELEASE_NUM>/<PACKAGE_NAME>/<PACKAGE_VER>

• Update view at: 
lcg/views/<RELEASE_NUM>/<PLATFORM>/…

• Entire lcg subpath is locked

• Split into multiple transactions, publish packages in parallel

• Problem: updating the view depends on packages being
published

�12

DEPTH OF THE LEASE PATH (EXAMPLE)

A typical publication in sft.cern.ch:

• Publish a number of packages under:  
lcg/releases/<RELEASE_NUM>/<PACKAGE_NAME>/<PACKAGE_VER>

• Update view at: 
lcg/views/<RELEASE_NUM>/<PLATFORM>/…

• Entire lcg subpath is locked

• Split into multiple transactions, publish packages in parallel

• Problem: updating the view depends on packages being
published

�13

ADD DEPENDENCIES TO JOB DESCRIPTION

• Repository

• Subpath

• Payload (URL)

• Script

• UUID

• Dependencies (list of UUID)

�14

WAITING FOR DEPENDENCIES

• Subscribe to messages from the “Finished Jobs” exchange

• Before starting a job, wait for all its dependencies to finish

Problem: If we subscribe too late, some messages will not
ever be received

Solution: Add a persistent database for finished jobs
(successful and failed). Use both notifications and database
queries to resolve status of dependencies

�15

WAITING FOR DEPENDENCIES

• Subscribe to messages from the “Finished Jobs” exchange

• Before starting a job, wait for all its dependencies to finish

Problem: If we subscribe too late, some messages will not
ever be received

Solution: Add a persistent database for finished jobs
(successful and failed). Use both notifications and database
queries to resolve status of dependencies

�16

WAITING FOR DEPENDENCIES

• Subscribe to messages from the “Finished Jobs” exchange

• Before starting a job, wait for all its dependencies to finish

Problem: If we subscribe too late, some messages will not
ever be received

Solution: Add a persistent database for finished jobs
(successful and failed). Use both notifications and database
queries to resolve status of dependencies

�17

PUBLISHING SYSTEM V3

JOB DATABASE

�18

RABBITMQ

PUBLISHER CVMFS RELEASE
MANAGER

NEW JOBS
AMQP AMQP

FINISHED JOBS

PUBLICATION EXCHANGE SUBSCRIPTION

JOB DATABASE

HTTP FRONTEND, 
SQL BACKEND HTTP REQ / REP

PUBLISHING SYSTEM V3

DEPLOYMENT EXAMPLE

�19

PUBLISHER

RABBITMQ

JOB DB (FRONTEND)

CVMFS REPOSITORY 
GATEWAY

PUBLISHER

PUBLISHER

CVMFS RELEASE
MANAGER

CVMFS RELEASE
MANAGER

CVMFS RELEASE
MANAGER

CI INFRASTRUCTURE

CVMFS PUBLISHER TOOLS

WIP @ https://github.com/cvmfs/cvmfs-publisher-tools

• Command-line tool for submitting and consuming jobs,
and running the job DB front-end: 
cvmfs_job submit|consume|db

• SystemD service files for consumer and job DB

• Provisioning scripts for configuring RabbitMQ, DB

• Single RPM which depends on compatible CVMFS (at least
2.5.2)

�20

https://github.com/cvmfs/cvmfs-publisher-tools

DEMO

CLOSING REMARKS

• Very promising!

• Could serve as the base for a unified CernVM-FS
repository API

• CernVM-FS Portals could use this system as a backend

• Set up parallel publishing into sft-nightlies.cern.ch and
sw.hsf.org

�22

