

European Organization for Particle Physics Exploring the frontiers of knowledge

CERN'S COMPUTER SECURITY OPERATIONS CENTRE

STATUS UPDATE

SYSTEM ARCHITECTURE

TECHNOLOGY STACK USED

Telemetry Capture Layer: Apache Flume

Data Bus (Transport): Apache Kafka

*Analytics: Go

Long-Term Data Store: Hadoop HDFS

Real-Time Index & Search: Elasticsearch

Visualisation: Kibana & CLI

Intrusion Detection: Bro (Zeek) & Snort

Web frontends:
OpenShift

DATA INGESTION RATES (1-7 FEB 2018)

- Network (Bro / Zeek):
 - 1078 GB / day in HDFS (raw json)
 - •761 GB / day in ES
 - 2.3 billion events / day
- System (other):
 - 451 GB / day in HDFS (raw json)
 - **256 GB / day in ES**
 - 1.1 billion events / day

THREAT INTELLIGENCE

THREAT INTELLIGENCE

- Malware Information Sharing Platform (MISP) as the sole threat intelligence platform at CERN
 - Automatic sharing of intelligence data with trusted peers
- CERN is currently operating 4 different instances:
 - Main CERN instance (> 1.1 M IoCs)
 - Worldwide LHC Computing Grid (WLCG) central MISP instance (>600 K IoCs)
 - Development MISP instance used for MISP development (CERN is an active contributor) and for validating new MISP releases
 - Special purpose MISP instance

NETWORK BASED INTRUSION DETECTION

NETWORK TRAFFIC AGGREGATOR AND SPLITTER

KAFKA DATA BACKBONE

KAFKA DATA BACKBONE

- New Kafka cluster
- 6 Kafka brokers, 3 Zookeeper nodes
 - 70,000 messages / sec on average
 - 72 hours retention period
 - Replication factor of 3
 - Data compressed using snappy

INLINE PROCESSING

INLINE PROCESSING

- Custom code written in golang
 - Jobs launched and monitored using Nomad
 - Running distributed on Nomad clients
- Data ingested from Kafka
- Types of jobs:
 - Data enrichment:
 - DNS (forward and reverse DNS resolutions)
 - GeoIP
 - Intrusion detection:
 - Based on IoCs from MISP
 - Custom, advanced rules
 - Monitoring
 - More to come

DATA ENRICHMENT

Very fast, not guaranteed to be 100% accurate

- DNS resolution
 - Golang routines: highly asynchronous
 - ~1-3 sec delay for entries that can not be resolved
 - Filtering what messages to enrich

USING MACHINE LEARNING FOR INTRUSION DETECTION

- Has the potential of detecting security incidents that can't be easily detected using signature based techniques
- The model is trying to learn what is normal activity and detecting potential deviations from it

Challenges:

- No tagged data
- High rate of false positives
- Very challenging to define a baseline

MACHINE LEARNING PIPELINE

ANOMALY BASED INTRUSION DETECTION

- Uses Apache Spark, written in Scala
- Input from Apache Parquet files on HDFS
- 3 different anomaly detection algorithms being used:
 - Isolation Forest
 - K-means
 - Local Outlier Factor
- Recall and precision evaluation even without labelled test sets

ANOMALY BASED INTRUSION DETECTION

