Prototyping, Integration and Assembly of the CMS Phase-2 Outer Tracker Endcap

M. Guthoff, O. Reichelt on behalf of the CMS collaboration

Forum on Tracking Detector Mechanics Cornell University, 20.06.2019

Overview

- Introduction to the CMS Phase-2 tracker endcap (TEDD = Tracker End Cap Double-Disks)
- Dee prototyping at DESY and IPNL
- Dee production quality control
- Integration and assembly

New CMS Tracking Detector

The HL-LHC will put challenging demands on the new tracker system

- High radiation → Radiation hard sensors
- High pileup → Increased sensors granularity
- Tracker input to CMS trigger system upgrade
 New modules with Pt sensitive trigger output

A new tracking detector is needed to meet the challenges

- 2 module types (2S & PS) with on-module trigger capability
- 6 Barrel layers (3 in TB2S & 3 in TBPS)
- 2 end-caps (TEDD) with 5 Double-Disks each

2S PS

TEDD Elements

- The **Dee** is the main element of the TEDD mechanics
 - A half disk of highly integrated CFRP sandwich with embedded inserts, cooling elements and pipes
- Exploiting symmetries: Minimizing number of different types of parts.
- A step on the straight edges for Dee to Dee assembly.
- 6 cooling sectors per Dee (wedge shaped)

Dee prototyping

Dee Prototyping

Lyon Prototype two cooling sectors

٠

٠

x [cm]

Dee Prototyping at DESY

Dee to Dee insert

Details of assembly sequence was shown in last years forum report: link

Prototyping at DESY

Production of CFRP face sheet with step

Production steps:

- Carbon fiber: NGF YS-95A (epoxy resin, UD prepreg)
- Layup: [60/-60/0]s
- Cured at 120°C, 4h, 3bar in
- Sandwiched between plastic plates for machining:
 - Holes milled by CNC machine
 - Edges cut by water jet
- Ears cut off by hand

Lyon Full Dee Prototype

- CAD models for full Dee prototype finalized
- All parts are available or ordered
- Gluing will start as soon as we receive the jigs
- Production together with industry partners
- Aim to have prototype completed by ~September, tested by year end.

Gluing jig for pipes, inserts and carbon foam

Dee production quality control

Thermal Testing at Lyon

Fridge installation:

- Aluminium PS and 2S dummy modules
- Equipped with heating foils and pt100 sensors

PS modules 2S modules

Reliable measurement but time consuming in final production

Infrared Imaging at DESY

Setup and Test piece

- Camera: InfraTec VarioCAM HD research 900
 - Up to 2,048 x 1,536 IR pixels
 - Standard lense (30 mm focal distance).
- Black fabric cover to minimize reflections and external IR ray
- External cooling supply (coolant: Novec[™] 7100, in final setup: CO₂)
- Measurement of temperature on surface while cooling.
 - Heating for thermal gradient by ambient air.
 - Warm spots indicate bad thermal contact.
- Test piece with defective gluing is used to study sensitivity with this method.

Infrared Imaging

Results

- Test piece with two PS module carbon foam cooling blocks.
- . Grooves in carbon foam (100 μm & 200 $\mu m)$
- . 200 µm step easily visible.
- . Method not sensitive for 100 μm step.

Infrared Imaging

Results

- Flat carbon foam piece, but areas without adhesive.
- . 15 mm adhesive gap easily visible
- Method not sensitive enough for gaps smaller than 9 mm.

Metrology

Setup and Results

- All mechanical TEDD components should be checked with metrology.
- Tactile probing: e.g. Dee insert positions.
- Laser scanner: e.g. envelope of mechanical components

40 x 35 cm Prototype:

- Measurement of module mounting inserts
- Comparison with CAD model
- Deviations are within specifications

DESY. Prototyping, integration and assembly of CMS Phase-2 Outer Tracker Endcap | O. Reichelt, M. Guthoff | 19th June 2019

Cooling pipe

Pressure Test and Ovalisation

- Pipe raw material in rings
- Stainless steel 1.4301
- Bending done in industry

Vacuum braising of end sleeve, to be done at CERN and DESY.

Ovalisation from beding:

Area 93.5% of ideal shape measured at highest bending angle

Pressure Test:

- 160 bar required
- Test up to 400 bar.
- Theoretical damage at approx: 700 bar

Module integration and TEDD assembly

TEDD Assembly Concept

- Challenge: Endcap reaches mechanical stability only when all parts are connected.
 - Individual Dees are fragile and need mechanical support.
 - Arc frame will be used to support Dee during all integration steps and transport between institutes.
- Dedicated assembly stations for:
 - Double disk assembly
 - TEDD assembly

Final detector

- Outer Skeleton installed
- Only now mechanically stable

- Installation of modules
- Thermal treatment
- Cold test
- Transport

Disk and double disk assembly

- Relative alignment of Dees
- Installation of patch panels and cooling manifold

TEDD assembly frame

- Alignment of double disks
- Installation of
- support skeleton and services

Arc frame (Dee support)

- Requirements:
 - Support of Dee, minimal deformation of Dee in all operations.
 - Combines to form a ring without stress on disk.
 - End pieces need to be aligned precisely wrt Dee.
 - Connects to all production stations like module mounting, disk assembly, storage etc.
 - Holds temporary patch panels.
- Prototype build from bent Aluminium profiles.
 - Two profiles linked with spacers for radial stiffness.
 - Current baseline design 40mm wide. (Initial 20mm prototype was too floppy.)
 - Connection piece between both ends with support of Arc in the center.

Arc frame stability

- Test of stiffness:
 - Lift Arc on one end (by 25mm) to simulate worst case scenario
 - Laser scan of Arc placed flat and lifted.
 - Difference shows deformation due to sagging.
- Arc suffers 7-8 mm deformation.
- Addition of bar connecting both ends -> Sagging reduces to about 3 mm.
- Further optimization of Arc frame geometry ongoing to optimize: Stiffness, precisions and weight.

Module integration, hot/cold oven, transport

Module installation station

- Facilitates comfortable access to all module locations.
- Rotation mechanism allows vertical, horizontal and tilted installation

Mockup installation

- Test of installing dummy modules on wooden mockup.
- Plan to assemble one 30°-sector with modules, cables and patch panels.
- Particularly cabling of PS modules will be tricky due to uneven pattern.

Phase change and cold test box:

- Can take one Dee (incl. Arc)
- Heat up for phase change thermal interface material.
- Cooling, electrical and optical connections routed to outside.
- Cool down for test of thermal connection module to support structure.

Disk and double disk assembly

- Dee to Dee alignment
 - Upper Dee is fixed to frame
 - Lower Dee rests on linear X/Y/Z stages
 - Match 6 dimensional position based on metrology measurement
- Arc frames are combined to form support ring.
- Disk to disk alignment.
 - Assembled disk is picked up by service frame
 - Assembly of second disk, stays on stages
 - Installation of spacers
 - Relative alignment of both disks.
- Disks and Arc frames are combined
- Installation of patch panels, cooling manifold.
- Full checkout (verify connections)

With second disk on service frame.

Details on mechanical and service design

Service design ongoing at UCLouvain, pictures by Nicolas Szilasi

- Patch panel support ring
- Carries patch panels and cooling manifold
- Important also for mechanical stability and Dee to Dee connection.

Optical patch panel

TEDD assembly I

- Alignment of all double-disks. (Each resting on linear stages)
- Installation of inner tube and longitudinal bars (no straps yet)
 - Must not introduce stress/movement
- TEDD has reached intrinsic stability

Tilt stages

TEDD assembly II

- Install rotation mechanism: insert "plug" in inner tube.
 - Each disk is individually supported
- Load transfer to rotation mechanism
 - Remove upper Arcs (TEDD rests in lower Arcs)
 - Lift rotation mechanism until it carries weight.
 - Remove lower Arcs.
- Install services and straps.
 - Needs rotation of TEDD to reach all sides.
 - Order of installation to be studied based on services design.
- Assemble transport carriage around TEDD for shipment.

Pierre Dené, IPNL

TEDD mechanical stability

- FEM simulation to predict deformation of TEDD from its weight.
- Studies to optimize optimize skeleton geometry.
 - Original 12-bar proposal was reduced to 8 bars with optimized position (30°-55°-40°)
 - Deformation: max. 280 μm, module displacement: 140 μm.
 - Planned to study position of strap rings to optimize access to patch panels.

Emilie Schibler, IPNL

TEDD stability during service installation

- Simulation stability in the situation when lifting TEDD by the rotation mechanism.
 - Lifted by inner tube, no straps, no services
- Check of different orientations to simulate rotation.
- Maximum displacement < 20 um.
- Lifting TEDD by inner tube creates little stress on disks.
 - Disk deformation when held by normal mounting points mostly due to stress from straps and bars.
- Lifting TEDD by rotation mechanism without straps is possible.

- Final TEDD design well on track, service design ongoing.
- Dee prototyping ongoing to finalize design and improve production process.
 - Full size prototypes available soon.
- Dee QA testing procedures are being established.
- Dee integration tooling design and integration procedure under development.
- Disk and TEDD assembly procedure defined and tooling prototypes under preparation.
- Mechanical stability of final TEDD and during assembly verified.

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Oskar Reichelt

project engineer

e-mail: oskar.reichelt@desy.de DESY CMS Group

Moritz Guthoff

Post doctoral fellow

e-mail: moritz.guthoff@desy.de DESY CMS Group

Backup

Prototyping, integration and assembly of CMS Phase-2 Outer Tracker Endcap | O. Reichelt, M. Guthoff | 19th June 2019

DESY TEDD Prototyping

