

MONTE CARLO SIMULATION IN SCANNED ION BEAM THERAPY

A medical physicist perspective

OMA Advanced School on Medical Accelerators and Particle Therapy April, 2nd 2019

Loïc Grevillot

OUTLINE

- The Monte Carlo (MC) method
- MC Applications in Light Ion Beam Therapy (LIBT)
- MC Beam Modeling
- Treatment planning

Origins of Monte Carlo

The Monte Carlo Method is a stochastic sampling method:

- To model a system by randomly sampling probability density functions (e.g. cross-sections)
- ➤ Often opposed to analytic or deterministic methods

Inventor:

- ➤ J. von Neumann (in cooperation with Ulam and Metropolis) between 1940-1947
 - working on research on atomic bomb (Los Alamos National Laboratories)
 - Coinciding with the start of the computer age
 - Name inspired by the gambling games in the casinos from the city of Monte Carlo
 - First "unclassified" paper: "The Monte Carlo Method" (Metropolis and Ulam, 1949)

First known reference:

- > Comte de Buffon (1777)
- > first proposal of a Monte Carlo-like method
 - ➤ He proposed to repeatedly tossing a needle on a ruled sheet of paper to determine the probability of the needle to cross one of the lines.

Monte Carlo in practice

Monte Carlo is a step by step simulation of the physical interactions in the patient.

Proton pencil beam

Secondary particle

The simulation accuracy depends on:

- Random number generator
- Geometry and Material descriptions
 - Water phantom
 - CT
- Physical cross-sections / processes
 - Stopping power / energy-loss
 - Nuclear cross-sections / fragmentation
 - ...
- Particle source description
 - Energy spectra
 - Beam optics
- Computation parameters settings
 - Step size
 - Cut
 - ...

When to use Monte Carlo?

Monte Carlo versus deterministic/analytic methods

How much do we use it?

J Saeco and F Verhaegen, Monte Carlo Techniques in Radiation Therapy, CRC Press, November 2016

MC codes in light ion beam therapy

Two main families

- General purpose
 - Geant4
 - Fluka
 - **PHITS**
 - **SHIELD-HIT**
 - **❖** MCNP
 - *****
- Dedicated
 - **❖** VMCPRO
 - **❖** MCSQUARE
 - FRED
 - ***** ...

Advantages/Drawbacks:

- > Can be used for anything
- > Full physics description
- > Slow

- Optimized for medical application
- Restricted physics implementation
- > Fast

Differences:

- Programming language(C++, Fortran,)
- ➤ Open or closed-source
- > Free?
- > License
- > User interface
- Community of developers
- Community of users
- > Performances
- **>** ...

To support start-up and commissioning of new facilities

- Generation of an accelerator library
- Depth-doses / Transverse profiles / Fragmentation spectra

Parodi 2012, Phys. Med. Biol. 57 (2012) 3759-3784

Beam line design

- Optimization of nozzle design for clinical applications (spot size, fragmentation)
- Influence of scanning magnet fluctuations on the delivered dose
- Simulation of failure scenarios and clinical impact (risk analysis)
- Design of passive elements

Grevillot et al., Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy, Phys Med Biol (60) 2015

Quality Assurance (QA)

• TPS QA / Patient Specific QA / On-Line and Off-Line treatment QA

J Saeco and F Verhaegen, Monte Carlo Techniques in Radiation Therapy, CRC Press, November 2016

To support dosimetry activities

• Perturbation factors / Fluence corrections / Stopping power ratios

Alanine detectors in a carbon ion SOBP

PET-based treatment verification

• Relationship dose distribution / β + activation images

Clival chordoma proton treatment, imaged ~16-26 min after irradiation

Prompt gamma imaging (PGI)-based treatment verification

• Relationship dose distribution / PGI

J Krimmer at al., Prompt-gamma monitoring in hadrontherapy: A review, NIM-A, July 2017

Richter et al., First clinical application of a prompt gamma based in vivo proton range verification system, Rad. Onc. 2016

Neutron and secondary dose evaluation scattering

- Out of field equivalent dose from Loma Linda proton scattering delivery system
- MCNPX MC code

Moyers et al., Leakage and scatter radiation from a double scattering based proton Beamline, Med Phys 35 (1), 2008

Physics processes

Energy loss (e.g. Bethe Block equation)

Bragg peak position (range)

Energy straggling (e.g. Landau, Vavilov equations)

> Bragg peak width

Multiple Coulomb Scattering (e.g. Moliere, Highland equations)

Beam size and penumbra increase with depth (in FWHM)

Nuclear interactions (fragmentation, halo of secondaries)

- ➤ Fragmentation tail (C¹²)
- Low dose (halo) of charged secondaries away from the beam axis (protons)

Proton depth-dose profile

The three ingredients

MedAustron nozzle design

MedAustron nozzle design

Passive elements

Nuclear interactions for protons

Fluence reduction: about 1%/cm of water Dose contribution: up to about 15%

GATE/GEANT4 MC simulation of a 230 MeV proton beam.

Nuclear interactions for protons

Nuclear halo far away from beam axis

GATE/GEANT4 MC simulations vs. measurements of the transverse dose profiles of a 252.7 MeV proton beam.

A. Resch et al., Evaluation of electromagnetic and nuclear scattering models in GATE/Geant4 for proton therapy, Med. Phys. 2019

Nuclear interactions for carbon ions

Fluence reduction: about 4%/cm of water Dose contribution: up to about 70%

Haettner et al, Experimental study of nuclear fragmentation of 200 and 400 MeV/u 12C ions in water for applications in particle therapy, Phys. Med. Biol., Vol. 58, 2013

Dose computation algorithms

> Ray tracing

- > Fast
- Do not properly account for lateral inhomogeneities

Pencil beam

- ➤ Compromise accuracy/speed
- Limitation for complex heterogeneities

➤ Monte Carlo

- > Slower
- Gold standard (detailed simulation of the physical interactions)

The water equivalent path length (WEPL) approximation

WEPL \rightarrow same energy loss

Proton mass stopping power in water (MeV.cm².g⁻¹)

$$D_{w} = \Phi_{w} \times S_{w}$$

Proton fluence in water (cm⁻²)

$$D_m = \Phi_m \times S_m \neq D_w$$

- \rightarrow **TPS** gives $\mathbf{D}_{\mathbf{w}}$ (historical reasons)
- \rightarrow Monte Carlo gives $\mathbf{D}_{\mathbf{m}}$

Dose to water and dose to medium

- $\triangleright D_{w} \rightarrow smooth$
- \triangleright D_m \rightarrow discontinuities
- ➤ Difference >10% in bone

Dose computation algorithms

Two Key advantages of Monte Carlo algorithm

- ➤ Transverse inhomogeneities

 Mostly for protons! (due to multiple Coulomb scattering)
- ➤ Transport of nuclear secondaries

 Mostly with range shifter and large air-gaps

Dose computation algorithms

Proton irradiation of brain tissue from a lamb using a range shifter and a 20 cm air gap.
Results are validated against measurements.

Widesott et al., Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm, *Phys. Med. Biol.* 63 (2018)

Dose computation algorithms

Proton irradiation of the lung

- A: PBA optimization (solid lines)
- B: A recalculated with MC (dotted lines)
- C: MC optimization (dashed lines)

Maes et al, Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer, Phys. Med. Biol. 63 (2018)

Range uncertainty

In vivo proton range verification: a review, A. C. Knopf and A. Lomax, Phys. Med. Biol. 2013

Range uncertainty

Source of range uncertainty in the patient	Range uncertainty without Monte Carlo	Range uncertainty with Monte Carlo
Independent of dose calculation		
Measurement uncertainty in water for commissioning	$\pm 0.3 \text{ mm}$	$\pm 0.3 \text{ mm}$
Compensator design	$\pm 0.2 \text{ mm}$	$\pm 0.2 \text{ mm}$
Beam reproducibility	$\pm 0.2 \text{ mm}$	$\pm 0.2 \text{ mm}$
Patient setup	$\pm 0.7 \text{ mm}$	$\pm 0.7 \text{ mm}$
Dose calculation		
Biology (always positive) ^	$+\sim 0.8\%$	$+\sim 0.8\%$
CT imaging and calibration	$\pm 0.5\%^{a}$	$\pm 0.5\%^{a}$
CT conversion to tissue (excluding I-values)	$\pm 0.5\%^{b}$	$\pm 0.2\%^{g}$
CT grid size	$\pm 0.3\%^{c}$	$\pm 0.3\%^{c}$
Mean excitation energy (I-values) in tissues	$\pm 1.5\%^{d}$	$\pm 1.5\%^{d}$
Range degradation; complex inhomogeneities	$-0.7\%^{e}$	$\pm 0.1\%$
Range degradation; local lateral inhomogeneities *	$\pm 2.5\%^{f}$	$\pm 0.1\%$
Total (excluding *, ^)	2.7% + 1.2 mm	2.4% + 1.2 mm
Total (excluding ^)	4.6% + 1.2 mm	2.4% + 1.2 mm

Paganetti et al, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys Med Biol (57) 2012

Independent Dose Calculation

Grevillot et al, GATE as a Geant4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans, Phys. Med. Biol. 57 (2012)

Independent Dose Calculation

TPS optimization (PBA)

Fluka recomputation (MC)

Fluka-based reoptimized plan (MC)

Fracchiolla et al, Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning, Phys. Med. Biol. 60 (2015)

GATE

A Geant4-based MC application for medical phsyics

GATE:

- Free and Open source
- A very active community

PMB citation prize 2 times: 2009 and 2015!

- Covers most fields of medical physics with ionizing radiations.
- ➤ Simple macro language → no C++ needed!
- A lot of capabilities!

GATE-RTION

Presented at 1st ESTRO physics workshop, Nov. 2017, Glasgow.

GATE-RTion release 1.0 available!

Visit our website!

http://www.opengatecollaboration.org/GateRTion

K(E)
12
10
08
00
04
02
00
50
100
150
200
250
300
350
400
E[MeV/u]

In-room patient positioning

Beam monitor calibration

- A stable and long term GATE release, called GATE-RTion, having all necessary features for dosimetric applications in Light Ion Beam Therapy facilities equipped with the Pencil Beam Scanning delivery technique.
- Providing a collection of tools necessary for the clinical users to interface GATE with the clinical environment
- Developing guidelines for clinical users on how to implement GATE into the clinical routine using the provided tools
- Currently 6 ion therapy centers involved in Europe

Objective:

To provide a CE marked Independent DosE cALculation (IDEAL) product for scanned ion beam delivery facilities using GATE-RTion dose engine.

The project is funded within the scope of the Austrian <u>COMET</u> - Competence Centers for Excellent Technologies, in a collaboration between <u>EBG</u> <u>MedAustron GmbH</u>, <u>Medical University of Vienna</u> and <u>ACMIT Gmbh</u>.

Project started in February 2018 for a duration of up to 8 years. First version planned to be available at MedAustron in 2019.

CONCLUSION

Monte Carlo is a necessary tool to support medical physics research and developments in light ion beam therapy

USEFUL BOOKS

J Saeco and F Verhaegen, Monte Carlo Techniques in Radiation Therapy, CRC Press, November 2016

M F Moyers and S M Vatnitsky, Medical Physics Publishing, December 2013

THANKS FOR YOUR ATTENTION!

GATE-RTion release 1.0 available!

Visit our website!

http://www.opengatecollaboration.org/GateRTion

