

Christoph Kurfuerst

There are two types of people in this world:

1. Those who can extrapolate from incomplete data

Machine QA objectives

- Verification of the functionality of the machine
- Identification of drifts well ahead of clinical effectiveness
- Risk mitigations as identified by the risk analysis
- Standardized test method:
 - for TA changes
 - after maintenance intervention

Machine QA objectives

Further QA framework determining factors are:

- Enabling compliancy to standards and laws
- Fulfilling QA requirements of certain suppliers

Here focus on QA of accelerator parameters with non-medically certified diagnostics.

The QA shall balance coverage and duration: a maximum of QA measurements (cycles and monitors) within a minimum of needed machine time

QA timeline

Machine QA

Clinical Operation

Use Cases:

- Handover of the machine to the user
- Product change not including an update of beam configuration data

Periodicity:

At least 1x per day

Steps:

- Accelerator QA: Beam parameters are within acceptance conditions
- Safety tests to assure patient safety
- System tests: treatment plan execution within acceptance conditions

Purpose:

- Validation of beam quality
- Ensure functionality of machine
- Risk mitigation

Extended QA

Use Cases:

- Long-term monitoring of overall machine performance
- Product Changes including an update of beam configuration data
- Debugging

Steps:

- Accelerator QA: Beam parameters are within acceptance conditions (multiple energies + intensities)
- Extended safety tests
- Extended system tests: additional dose uniformity test

Periodicity:

At least bi-weekly

Purpose:

- Assure stability of machine, identify long-term drifts
- Debugging tool in case of a performance deviation
- Risk mitigation

Beam Instrumentation

⊕MA ■ MedAustron ■

Beam Instrumentation

- Beam currents/intensities:
 - LEBT, LINAC, MEBT, Sync: Current transformers (DC + AC)
 - Treatment rooms: Dose Delivery System
- Beam positions and profiles:
 - WSX (planned)
 - PUX
 - Sync: Pickups (positions only)
 - HEBT: Scintillating Fibre Hodoscopes (SFX)
 - Treatment rooms: Dose Delivery System
- Beam revolution frequency:
 - Sync: sRF frequency
- Further data: sRF loop contributions,...

Action types

No action (OK):

The QA passes – machine can be used for clinical operation.

No follow-up action required.

Action type 1 (Warning):

The QA passes – machine can be used for clinical operation.

User informed of the observed deviation in the respective QA protocol.

Action type 2 (NOK):

The QA fails – machine must not be used for clinical operation.

Immediate troubleshooting and corrective measure.

Machine QA: Evaluation of QA results

- Automatic report generation (pdf)
- Graphical summary of the most relevant results on front page
- Tolerance and Action levels defined vs. Reference measurements

Interactive expert tool

Based on python analysis framework at MedAustron: **PACMAN**

Further detailed example plots will follow.

General time trend plot

Overview of drifts

The plot shows the drift behavior of the most important monitors/attributes

Energy dependency

Horizontal position at a pick-up in a high dispersive region

Intensity plot

	100%	mean: 1.47e+10 std: 3.04e+09 relative: 100.00 %
	50%	mean: 7.39e+09 std: 2.13e+09 relative: 50.23 %
	20%	mean: 3.24e+09 std: 6.25e+08 relative: 22.00 %
	10%	mean: 1.10e+09 std: 2.48e+08 relative: 7.50 %

Transmission plot

The achieved intensities throughout the accelerator

Example NOK scenarios

Due to measurement error (false positive):

- Unusual high noise on monitor or faulty signal
- Monitor slightly displaced after maintenance window

Due to beam being off (true positive):

- Magnets not properly demagnetized
- In general: machine drifts or jumps reaching action levels

Example drift scenarios at MedAustron

- Intensity drift with according correction
- Seasonal HEBT position drift
- Position drift with according correction

Intensity dirft example

I2MMP numberOfParticles Intensity drop, leading to recommissioning of the source in November 2017.

The recommissioning brings the required intensity back.

Transmission

LE01000CTA->LI00001CTA single transmission 2000/01/01 - 2018/11/29

СС	7800434410890270
CChuman	IR3 H+ S1 E=62.4MeV deg:20% var0ver0 clinical
Transmission	(0.40 ± 0.03) Min: 0.29 Max: 0.45

Detailed time trend of the transmission between LEBT and LINAC, with successful recommissioning of the source in November 2017.

Excellent stability of the beam in the injector: intensity fluctuations of 10 % were reduced to below 3 %.

Plot correlation

General example of correlation overview

7800434410890270 IR3 | 20% | H+ | 62.4 MeV

7800434410C90270 IR3 | 10% | H+ | 62.4 MeV

7800434410C905CA |R3 | 10% | H+ | 148.2 MeV

show CC-monitor

The intensity variations lead to the observation of related acceptable variations of the vertical FWHM throughout the HEBT.

examples

Beam position temperature dependency observed for the main ring pick-ups as well as in the transfer line towards the irradiation rooms for the profile monitors.

Position drift and correction

Position drift and simulations

EX01003SFX

30

EX01000SFX

20

10

---- MST_dkn(0)=0.6E-5_MSE_dkn(0)=1.1E-5

-0.8

EX02001SFX

50

----- MBHs dkn(0)=-5E-5

s [m]

EX03001SFX

70

T301001SFX

T301000SFX

Measurement

80

DDM

90

Position drift

Famous hypothesis di Andrea De Franco (OMA) fellow): a vertical position drift in the MEBT is the root cause for the horizontal position drift in the HEBT. This might be possible via a modified phase space filling, leading to a modified transverse *emittance with coupling* between the planes in the ring and a slight related variation of the extracted beam position in the HEBT.