HH \rightarrow bbZZ(4ℓ) for FCC-hh studies

E. Fontanesi
L. Borgonovi, S. Braibant
University & INFN Bologna

FCC-hh physics analysis meeting
Thursday, 29 November 2018
OUTLINE

MC samples

Event selection

Signal strength

λ studies
Signal events were generated for several values of k_{λ} in the range [-1, 3] in step of 0.5.

- The **ttZZ background** is negligible.
- The contribution of the $4\ell +\text{jets}$ (ZZ^*, Z^*Z^*, ZZ) continuum was evaluated using a $\ell\ell\ell\ell\ell\ell$ ($\ell = e, \mu$) sample, generated with the 4ℓ invariant mass in the range [100, 150] GeV and only heavy flavour partons (b/c). It is found to be negligible.
Event selection

4ℓ analysis + 2 b-jet request
- $|\eta| < 4$ & $p_T > 5$ (7) & iso < 0.7 GeV to identify a good muon (electron)

- $N(\ell) \geq 4$
- $N(\ell^+\ell^- \text{ pairs}) \geq 2$
- $M_{Z1} = [40, 120]$ GeV
- $M_{Z2} = [12, 120]$ GeV
- $N(\text{isolated } \ell') = 4$
- p_T cuts on two ℓ
- $M_{4\ell} = [120, 130]$ GeV
- $N(b\text{-jet}) = 2$
- $M_{bb} = [80, 130]$ GeV
- $\Delta R(bb) < 2$

![Graph showing the selection efficiency](image)

FCC-hh Simulation (Delphes)
- $\sqrt{s} = 100$ TeV
- $L = 30$ ab^{-1}

Selection efficiency ~15%
The invariant mass spectrum of the selected 4ℓ was normalized to an integrated luminosity of 30 ab^{-1}:

<table>
<thead>
<tr>
<th>Process</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>489</td>
</tr>
<tr>
<td>ttH</td>
<td>1162</td>
</tr>
<tr>
<td>$bb+gg(H)$</td>
<td>317</td>
</tr>
<tr>
<td>ZH</td>
<td>52</td>
</tr>
<tr>
<td>ttZ</td>
<td>179</td>
</tr>
</tbody>
</table>

The flat contribution of the ttZ background has been added wrt the last version of the CDR.
COMBINE tool was used to perform the statistical analysis.

Three different scenarios for three different assumptions on the systematic uncertainties were considered:
no systematics, 1%, 3%.

Expected precision on the signal strength r:

<table>
<thead>
<tr>
<th></th>
<th>No syst.</th>
<th>1%</th>
<th>3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1σ (68% CL)</td>
<td>10%</td>
<td>11%</td>
<td>17%</td>
</tr>
<tr>
<td>2σ (95% CL)</td>
<td>19%</td>
<td>21%</td>
<td>34%</td>
</tr>
<tr>
<td>Significance @95%CL[σ]</td>
<td>11.32</td>
<td>10.39</td>
<td>6.86</td>
</tr>
</tbody>
</table>
To estimate the sensitivity on k_λ, nine signal samples for different k_λ values were generated:

-1, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Cross section from: https://github.com/FCC-hh-framework/EventProducer/blob/master/config/param_FCC.py#L772-L796

Approach to model anomalous k_λ signals in COMBINE (counting experiment, k_λ is a POI): yield parametrized vs k_λ with quadratic function by fitting various k_λ samples after the full selection.
Three different scenarios for three different assumptions on the systematic uncertainties were considered:

- **no systematics**, 1%, 3%.

Expected precision on the self-coupling modifier k_λ:

<table>
<thead>
<tr>
<th></th>
<th>No syst.</th>
<th>1%</th>
<th>3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1σ</td>
<td>14%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>2σ</td>
<td>28%</td>
<td>31%</td>
<td>51%</td>
</tr>
</tbody>
</table>
Assuming a different detector configuration, for example a larger tracker and/or higher magnetic field and consequently a different request on the p_T of muons and electrons, $p_T > 10$ GeV, the precision on the signal strength is not significantly affected.
Assuming a different detector configuration, for example a larger tracker and/or higher magnetic field and consequently a different request on the p_T of muons and electrons, $p_T > 10$ GeV, the precision on the signal strength is not significantly affected.
A complete study of the $bbZZ(4\ell)$ channel in all the possible final states (4μ, $4e$, $2e2\mu$, 4ℓ) has been performed.

The expected precision on the signal strength r and on the Higgs self-coupling modifier k_λ without systematics at 68% CL is:

\[\delta r(\text{stat}) \approx 10\% \quad \delta k_\lambda(\text{stat}) \approx 14\% \]

The precision on r and k_λ is not significantly affected by varying the detector configuration as considered in this study.

Plots for the CDR - The four lepton invariant mass (without the inclusion of the ttZ background) and the negative log-likelihood on k_λ in the 4ℓ final state (also for two different detector assumptions) were included in the CDR as most relevant results.

An analysis note to include all the documentation and results will be completed before Christmas.