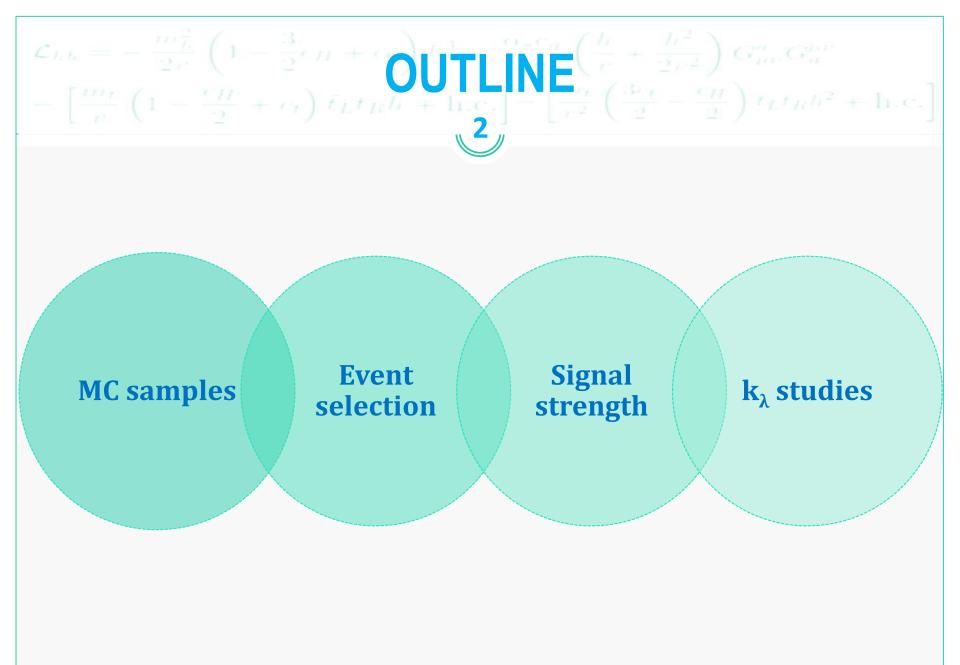


HH → bbZZ(4ℓ) for FCC-hh studies

E. Fontanesi L. Borgonovi, S. Braibant


University & INFN Bologna

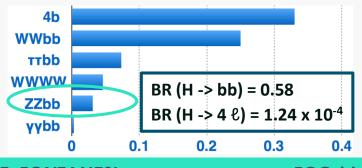
FCC-hh physics analysis meeting

Thursday, 29 November 2018

E. FONTANESI

FCC-hh physics analysis meeting

E. FONTANESI


FCC-hh physics analysis meeting

$\mathcal{L}_{hh} = -\frac{m_{h}^{2}}{2r^{2}} \left(1 - \frac{3}{2}r^{2} + \frac{1}{2}r^{2} \right) \frac{MC}{mC} samples \left(\frac{h}{r^{2}} + \frac{h^{2}}{2r^{2}} \right) G_{hh}^{2} G_{hh}^{2} G_{hh}^{2}^{2} + \frac{1}{2}r^{2} \right) - \left[\frac{m_{h}}{r^{2}} \left(1 - \frac{r_{H}}{2} + r_{f} \right) f_{L}^{2} h^{h} + \frac{h^{2}}{r^{2}} \right) f_{L}^{2} h^{h}^{2} + \ln c \right]$

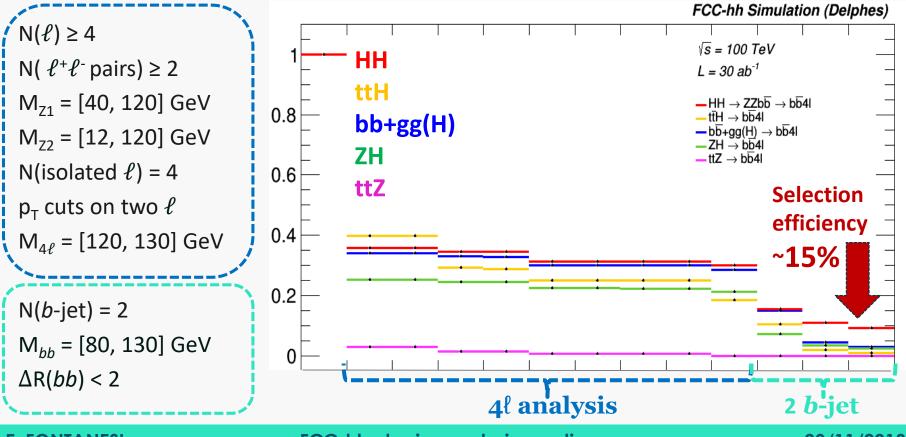
MADGRAPH5_amc@NLO	Process	σ x BR [fb]	K-factor
(theoretical cross-sections except for the bb+ggH(4 ℓ)	H(bb)H(4ℓ)	0.178	
sample)	ttH(4୧)	4.013	1.22
+ DELPHESPYTHIA8	bb+ggH(4ℓ)	0.369	3.2
(hadronizaton and decay of the H/Z bosons in leptons) HH→ bb 3 UNDECAYED	Z(bb)H(4ℓ)	0.071	1.1
UNDECAYED	ttZ(2ℓ)	2594.4	

SIGNAL

Signal events were generated for several values of k_λ in the range [-1, 3] in step of 0.5.

BACKGROUND

✤ The ttZZ background is negligible.

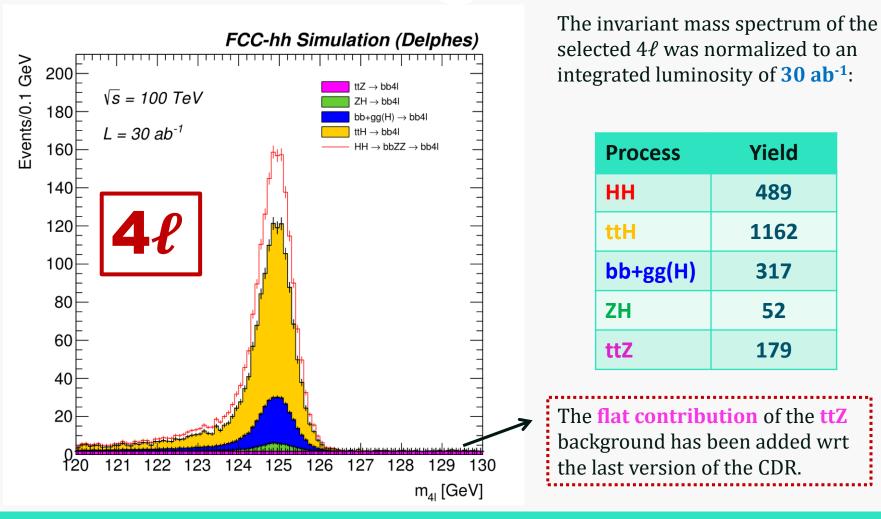

★ The contribution of the 4ℓ +jets (ZZ*, Z*Z*, ZZ) continuum was evaluated using a lllljj (ℓ =e, µ) sample, generated with the 4ℓ invariant mass in the range [100, 150] GeV and only heavy flavour partons (b/c). It is found to be **negligible**.

E. FONTANESI

FCC-hh physics analysis meeting

4ℓ analysis + 2 *b*-jet request

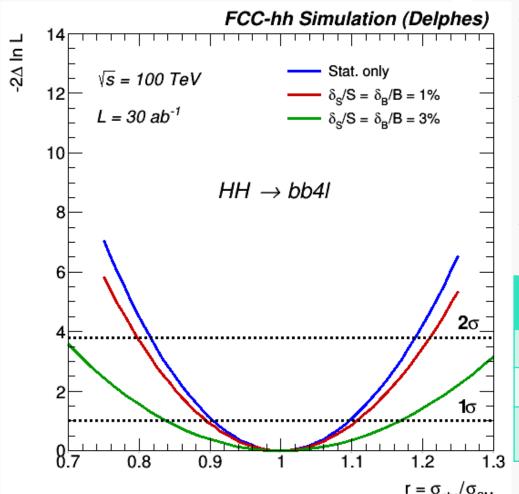
• $|\eta| < 4 \& p_T > 5$ (7) & iso < 0.7 GeV to identify a good muon (electron)



Event selection

E. FONTANESI

FCC-hh physics analysis meeting



E. FONTANESI

FCC-hh physics analysis meeting

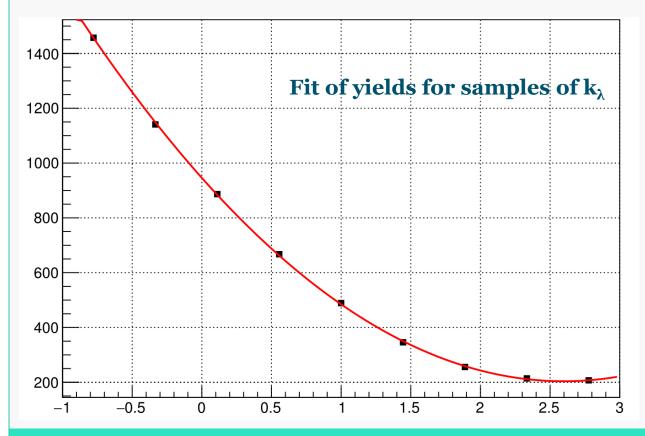
Precision on the signal strength

- **COMBINE** tool was used to perform the statistical analysis.
- Three different scenarios for three * different assumptions on the systematic uncertainties were considered: no systematics, 1%, 3%.

Expected precision on the signal strength r:

	No syst.	1%	3%
1σ (68% CL)	10%	11%	17%
2σ (95% CL)	19%	21%	34%
Significance @95%CL[σ]	11.32	10.39	6.86

 $r = \sigma_{obs} / \sigma_{SM}$

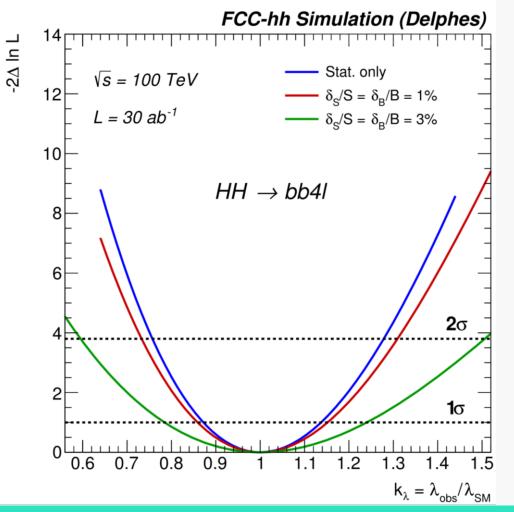

E. FONTANESI

FCC-hh physics analysis meeting

To estimate the **sensitivity on** k_{λ} nine signal samples for different k_{λ} values were generated: -1, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Cross section from: https://github.com/FCC-hh-framework/EventProducer/blob/master/config/param_FCC.py#L772-L796

Precision on k,

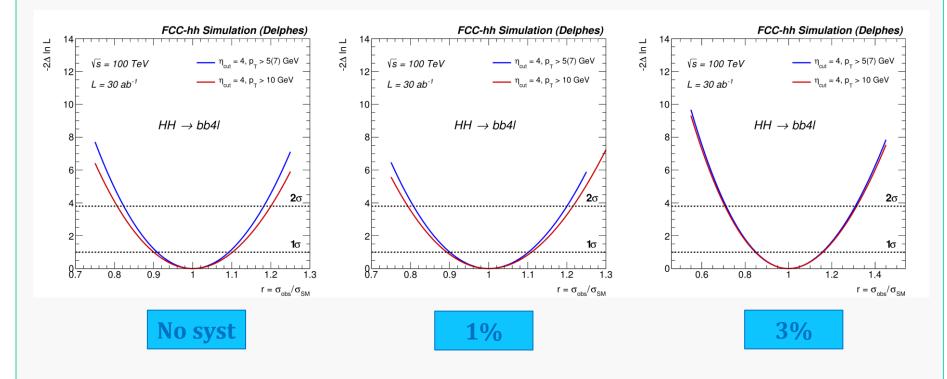


Approach to model anomalous k_{λ} signals in **COMBINE** (counting experiment, k_{λ} is a POI): yield parametrized vs k_{λ} with **quadratic function** by fitting various k_{λ} samples after the full selection.

E. FONTANESI

FCC-hh physics analysis meeting

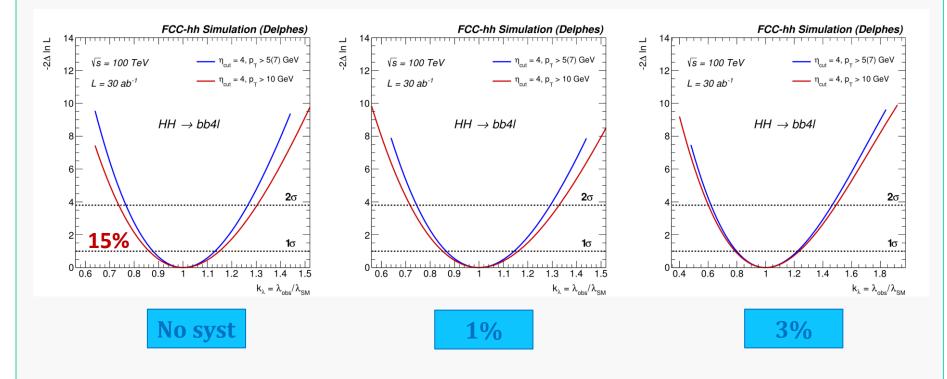
Precision on k_{\lambda}


- Three different scenarios for three different assumptions on the systematic uncertainties were considered:
 no systematics, 1%, 3%.
- Expected precision on the selfcoupling modifier k_λ:

	No syst.	1%	3%
1σ	14%	15%	24%
2σ	28%	31%	51%

E. FONTANESI

Different detector assumptions: r


Assuming a different detector configuration, for example a larger tracker and/or higher magnetic field and consequently a different request on the p_T of muons and electrons, $p_T > 10$ GeV, the precision on the signal strength is not significantly affected.

FCC-hh physics analysis meeting

Different detector assumptions: k_A

Assuming a different detector configuration, for example a larger tracker and/or higher magnetic field and consequently a different request on the p_T of muons and electrons, $p_T > 10$ GeV, the precision on the signal strength is not significantly affected.

FCC-hh physics analysis meeting

A complete study of the bbZZ(4ℓ) channel in all the possible final states (4µ, 4e, 2e2µ, 4ℓ) has been performed.

 $\mathcal{L}_{mn} = -\frac{m_{h}}{2r} \left(1 - \frac{3}{2} \right)^{n} \frac{1}{r_{h}} \frac{1}{r_{h}} \left(1 - \frac{3}{2} \right)^{n} \frac{1}{r_{h}} \frac{1}{r_{h}} \frac{1}{r_{h}} \left(1 - \frac{3}{2} \right)^{n} \frac{1}{r_{h}} \frac{1}{r_{$

• The expected precision on the signal strength r and on the Higgs self-coupling modifier k_{λ} without systematics at 68% CL is:

 $\delta r(stat) \approx 10\% \longrightarrow \delta k_{\lambda}(stat) \approx 14\%$

- * The precision on r and k_{λ} is not significantly affected by varying the detector configuration as considered in this study.
- ✤ Plots for the CDR The four lepton invariant mass (without the inclusion of the ttZ background) and the negative log-likelihood on k_λ in the 4ℓ final state (also for two different detector assumptions) were included in the CDR as most relevant results.
- An analysis note to include all the documentation and results will be completed before Christmas.