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Big news from the LHC- XENONIT
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* Despite all of this, it’s been (as usual) an incredibly fruitful year for jet physics

* | will do my best to showcase some of the (in my personal opinion) interesting theory results

SIMONE MARZANI, UNIVERISITA DI GENOVA & INFN GENOVA 3



Looking back to 2019

My hopes for 2020

e Can we come up with quantifiable metrics beyond performance
for comparisons of different ML algorithms? Different metrics for

different applications?

e |[s it possible to find ways to leverage performance gains from

The aim of this talk
IS to spark a
discussion about

[arXiv:1803.07977]

ML methods in calculable and robust frameworks?

e Can we perform precision calculations for other key

Tools and Method.? i Pﬂachine Learning h OW m u C h p Pogre S S

jet substructure observables? And compare these we have made on

calculations with measurements?

e |[s it possible to improve non-perturbative modelling,
e.g. through improvements of perturbative

component of parton showers?

these points

Calculations 32

Conclusions
o e Machine learning is here to stay.
Frederic Dreyer e If a problem can be framed in the “right” way, ML can lead to real insights - but
Boost 2019 Theory it should be primarily viewed as tool!
Summary e Precision calculations of jet substructure observables will be critical for future
measurements, notably for a_ extractions
e See you in Hamburg!
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Outline

 New tools (with and without machines): groomers, taggers, observables
and new insights

* Opening the black box: machine-learning and expert-knowledge
* Looking ahead: jets for future colliders

e Conclusions
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New tools (w/o machines)
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Dynamical grooming

 Find hardest branch in the C/A sequence, i.e.

1
k@ = — max z(1 — z)pr (6,/R)"

Pr i€eC/A
* grooming condition auto-
* Drop all branches at larger angles generated on a jet-by-jet
basis
E” cig“ °* more aggressive grooming
dynamical SoftDrop | with deceasing a
grooming

log 1/0 log1/6
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Dynamical grooming
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Dynamical grooming

* Recently applied to W and top tagging

 Good performance is found, comparable to recursive SoftDrop but

QCD mistag

with less fine-tuning

—
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Color ring

* Design a simple and versatile colour-singlet tagger looking at the
behaviour of matrix elements in the soft and limit

* Signal (colour singlet) and background are typically characterised by
different colour correlations (we look at the boosted limit of the dipole)

|MB’2 _ s + 58 ((na ) - k) + (my - 7)(ng - k)> [up to monotonic 3 I ]
2 . 7 - . 7 - N n — Z(up) + H(bb)
M| Cs Cs \(na-np)(n-k) (ng-np)(n-k) functions] § —— Z(up) + bb -
1 —cosf, + 1 — cosbp 1 -
1 —cosf, b ;}':_:_:':_:}_:_:}':}:1\\ .
Q -
0 __________
(92 6) ‘50 ’ 1
—I_ \k Piel 0 x Pl 3 ;
O ]{ (Dc') 4 \ Omin :% Aol Iy 1071 [—
)2 F oW
Sl t | .
_____________ 1
0>1 Color ring O = (62, + 62,) /62,
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Color ring

 Good performance in distinguishing singlet vs octet but performs worse
with more complicated (QCD) backgrounds

H — bb H — gg Z —qq
1.07 ..... Dipolarity D 1.09 ... Dipolarity D A 1.079 ..... Dipolarity D )
----- Pull angle ¢, ----- Pull angle ¢, . / ----- Pull angle ¢,
0.8 1l — D2 ..’." 0.8 T — D2 i}:} 0.8 N — _D2 .,‘;{i':

=== Color ring O ——- Color ring O i ——- Color ring O Ry

False-positive rate
False-positive rate
False-positive rate

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency Signal efficiency Signal efficiency

* Limitation probably due to modelling the extra (sub)jet with one soft gluon

* Interesting interplay with standard observable D2
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Jets with Energy Correlators

* Energy Flow Operators are natural
objects in field theory

©. @)

E(n) = /dt lim 7*n"To;(t, ri7)
T— 00
0

* However, standard observables are not
directly related to these operators
(although moments are)

* lan Moult will give more details in this talk
Here | will only mention a few highlights
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Jets with Energy Correlators

* To make contact with experiment, we would like to define observables that
are distributions of one variable

« Starting from the two-point correlator, one can define consider higher
points, integrating out the extra directions with some constraints

* This projected N-point correlators are an infinite family of jet observables
* We can go further and analytically continue in the complex plane N—=V

* Incorporating track information for these observables is much simpler

than in the traditional case T'E
do don VS

N
— = dlly ——— dx; T;(2;)8 [e — e({wip! T/E
de ;/ NdHN /71;[1 v (x ) [6 6({$ by })] Ez — /dQCZ a?sz(ibz)Ez = Tz(l)Ez
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Geometry of events

* When are two collider events similar?

* Define a metric (Earth Energy Moving Distance) that tells us how
much work is required to move one event to another one

B
EMDg g(E,&') = {}HL%}ZZM (_) N S
15 = -
J
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* Theorists are alway happy when we can
phrase a problem using geometry
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Geometry of events

Six Decades of Collider Techniques as Geometry! Sy
é\ P, /f(//
IRC Safety is smoothness Event shapes are distances Jets are projections to Substructure resolves @t Q b
in the space of events from events to manifolds. few-particle manifolds. emissions within the jet. O J/

)
%ﬁ ,’i”f;,\sti"i“ﬁ'i?: F%?'?wi?GW, :
. , _ : ) . , %0 I
—0— 0O 0(5) = min EMDgR(€,€) 7= argmin EMDg r (€,€) ©(9) = min EMDg(J,€). e Q,%,: 3
Taming infinities Event Shapes Jet Algorithms Jet Substructure Pileup
1960 020
1977 1997-1998 2014-2019
Thrust, Sphericity C/A jet clustering Constituent Subtraction
[Farhi, PRL 1977] [Wobisch, Wengler, 1998] [Berta, Spousta, Miller, Leitner, JHEP 2014]
[Georgi, Machacek, PRL 1977] [Doskhitzer, Leder, Moretti, Webber, JHEP 1997] 2010_201 5 [Berta, Masetti, Miller, Spousta, JHEP 2019]
ezl EEE N-(sub)jettiness, XCone

Infrared Safety ky jet clustering S Tacﬂmaml el LA And ma ny more!

[Kinoshita, JMP 1962] [Ellis, Soper, PRD 1993] [Thaler, Van Tilburg, JHEP 2011]

[Lee, Nauenberg, PR 1964] [Catani, Dokshitzer, Seymour, Webber, NPB 1993] [Stewart, Tackmann, Thaler, Vermilion, Wilkason, JHEP 2015]
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Event Isotropy

 Geometrical interpretation of collider events is in its infancy but has

already produced some fruits

* New observable called event isotropy directly based on the Energy
Mover’s Distance of an event from a uniform energy distribution

Probability Density

Probability Density
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see Cari Cesarotti video poster for details
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Openmg the black box
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Jet tagging made easy

* Developing a set of multi-prong taggers N - I
exploiting N-subjettiness variables (see B
talks by A. Larkoski on g/g discrimination ol
last year) R

* The Authors develop here a —
phenomenological LoRD of Taggers which is |
build using and it’s decorrelated from the |
mass

T'=T—bp—a, -+ thecoefficientscBrare [\ < w. — e
_ 5 5 determined via logistic " : 3
I' = ¢y log 7, regression on simulated :“
n,p training samples
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Towards analytics for NN

AUC v. n - leading-log sample

0.25 \\\\k\
* Exploit expert-knowledge of the underlying theory % N S
. . w
(QCD) to study the behaviour of a simple network o
== prim (likelihood) .
0.101 ¢ prim (perceptron) \\ﬂ\
. . A prim .(ful! NN) e
* Focussing on the question of quark/gluon 005175 e percapon
A std (full NN)
discrimination, a novel version of N-subjettiness, which [+ =+ 4 *
at leading-log is only sensitive to primary splittings {74 4} | 4 j
o] T T

™m A . ﬂ AUC v. n - Pythia8 sample
1
TN — Z]:VZZ (RO) 0.25}
1= . . 0.20
* |f one measure n such variables, the optimal s EEEE
o 0.15F Q &
discriminant at leading log is just a cut on the last one | « wneem ? N
A prim (full NN)
0.05¢ : z:j E;;::r!;/iron)
.A stcll(fulll\fN) . .
Ca\" s % ¥
£ = (G2) epl=(Ca - CrIR(T,) o gidig
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Towards analytics for NN

 The behaviour of the system and the optimal discriminant are so simple

that we can ask ourselves whether a one-neuron network can achieve it

 We can determine (semi) analytically whether such simple network
reaches optimal performance by looking for the cost function minima

 Remarkably, it depends on the functional form of the inputs!

leading-log optimal is
al=.. .=a.n-1=o

coefficients

IN

Neuron weights

L ¢ a”, (x10) ’/g’
o af gl
L A b ,,“K
/A’
A7 log?
- /A’/
A — = — == ——— = -

(prim))

- inputs: log?(1/T;

1 2 3 4 5
n

SIMONE MARZANI, UNIVERISITA DI GENOVA & INFN GENOVA

coefficients

Neuron weights

¢ a2, (x10) e
III a[(7n) A”’
i A b™ tad
7’
/A,
,/
7
7’
¥ |
og
K/
C N
TR
SSBeo_
inputs: log(1/t""™) B-e s o)
1 2 3 4 5

coefficients

N
o
T

=
wu
T

=
o
T

w
T

o
T

|
ul

Neuron weights

¢ a",(x10) O
m o
A ptm
B
&
()
? ¢ @
2 A
- § A
inputs: T,""™
1 2 5

see Giovanni Stagnitto video poster for details
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Jet morphology

* Classifiers exploiting convolutional NN and jet images typically
outperform standard top taggers (a detailed comparison can be found

here)
* What is a CNN-based top tagger learning?

* |t has been argued that most of information that these classifiers exploit

. Higgs jet vs QCD jet

come from IRC safe observables I
 For Higgs tagging against QCD a NN RIS € .
classifier fed with IRC safe two-point EC t # Tuaining: MGs+YE+Delphes
. é L Testing: MG5+PY8+Delphes |

performs similarly to more complex CNN SRR S A Tuwo-level-tjet spectra ]

3 B MLP+jet spectra

« This is not the case for top tagging I

0 0.2 0.4 0.6 0.8 1

Higgs jet tagging efficiency
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Jet morphology

* What is the role of IRC unsafe (counting) observables?

* Beyond counting: Minkowski functionals (well-developed integral geometry)
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Jet morphology

* What is the role of IRC unsafe (counting) observables?

* Beyond counting: Minkowski functionals (well-developed integral geometry)

N (0)

1. Start with pixels with finite energy deposition N©
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Jet morphology

* What is the role of IRC unsafe (counting) observables?

* Beyond counting: Minkowski functionals (well-developed integral geometry)

- - W

N (2i+1)x(2i+1) square

1. Start with pixels with finite energy deposition N©
2. Count the number of pixels N© in a (2 i+1)x(2i+1) squares around each original pixel
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Jet morphology

* What is the role of IRC unsafe (counting) observables?

* Beyond counting: Minkowski functionals (well-developed integral geometry)

- - W
T

N© (2i+1)x(2i+1) square N®: new independent info.

1. Start with pixels with finite energy deposition N©)
2. Count the number of pixels N© in a (2 i+1)x(2i+1) squares around each original pixel
3. The sequence of N gives a quantitative description of the spatial distribution of pixels in the jet
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Jet morphology

* A top tagger is build using IRC safe (two-point EC) and IRC unsafe
(Minkowski sequence) inputs to a NN

Top jet MG5+PY8+Delphes
...............................
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QCD jet mistag rate
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_train: MG5+PY8+Delphes
- test: MG5+PY8+Delphes

RNg, no), N©) (4GeV)

— R»NSQ,jV(O) JV(l)
— CNN

vvvvvvvvvvvvvvvvvvv

top jet tagging efficiency

* The use of Minkowski sequence nicely fills the gap between the
performance of the NN purely based on two-point EC and the CNN
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Looki ng ahead
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Higgs tagging @ HL-LHC

 Exposing the Higgs trilinear coupling is one of the main goal of the High-
Luminosity LHC

* Incredibly challenging, it’s even worse in the SM than you could have
imagined because of destructive interference at Born level (calculating
higher-order corrections is a fascinating topic... a story for another time)

g h
h C

t4 Foo--o-- <M —— Higgs self-coupling t4 T But experimentally can only
b only in triangle 1y, see | triangle + box |?

* Higgs pair production cross-section 40fb, which implies 10° di-Higgs
events at HL-LHC but we have to fight a formidable multi jet background
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Higgs tagging @ HL-LHC

LT T 17T I [ ] L | { g g gL | [ | 71T
How we can control multijet background systematics e 008" MadGraph$ 2.62 Is= 14 TeV ]
with boosted Higgs tagging is challenging but important open question - PR ’ o A ]
1 \ @ 0.06 N ]
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E 1.5% i 2 3 ) 0 ||4—4’le N e o o e TR ' ]
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Higgs tagging @ HL-LHC

* What is the machine learning? Using the SHapley Additive exPlanations

framework

Variables fed
in to DNN
ranked in

decreasing
order of
impact

Lower m(hh) leads to higher signal score

Resolved, k3 =5

b-tag(h{"9, j»)
b-tag(hs"d, j,)
b-tag(hsa"9, j,)
b-tag(h{®", j)
Mhpn

BRj, j;(h§>")
pr(hger)
m(hgand)
ARfl.fz(hgand)
prhse™)
m(hgand)
n(h{a"")

P

n(hgand)

E_;_niss

9(hg™9)
$(hs™™)
¢(p7rpi55)

Ny

Ne

More positive impact on DNN signal score

03 -02 -01 00 01 02 03
SHAP value (impact on model output)
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Feature value

>
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Higgs boost important in high boost regimes

pr(h§ad)
AR/]‘jz(hfand)
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Angular separation of sub-jets powerful

Amacker, et al. arXiv:2004.04240
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Future ete- colliders

* Issues with jet clustering:
* information distortion: hadrons from different Z clustered in the same jet

* information loss: jet algorithms map particles momenta into a lower-
dimensional space

* at lepton colliders we can successfully use event shapes that avoid jet
clustering
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Future ete- colliders

* Fox-Wolfram moments of the energy distribution are considered

e evident analogies with CMB power spectrum
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* physics at characteristic scales
shows up as “acoustic peaks”

* partonic channels
* tail sensitive to hadronisation

29
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Future ete- colliders

 Train a Deep Neural Network with different strategies, involving jets,
track or images

* study on the achievable precision for the Higgs width for collisions at 240
GeV and 5ab-1

Jet Jet+FW+track Image Image+track
Precision (%) J1 J2 J3 El E2
o(Zyhw,,) 1.7 (1.6) 1.4 (1.6) 1.5 (1.6) 1.5 (1.4) 1.5 (1.4)
o(Zyhw,,) 1.6 (1.6) 1.2 (1.2) 1.1 (1.1) 1.1 (1.1) 1.1 (1.1)
o(vvhy) 2.8 (2.7) 1.8 (1.7) 1.9 (1.8) 1.4 (1.4) 1.3 (1.3)
I, 3.270% (3.1) 23707 (2.2) 23197 (2.3) 1.979° (1.9) 1.9701 (1.9)

* the precision achieved is robust against the rescaling of detector
resolutions and different detector templates
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Li, et al. arXiv:2004.15013


https://arxiv.org/pdf/2004.15013.pdf
https://arxiv.org/pdf/2004.15013.pdf

Future ep colliders

* Our understanding our QCD is founded on deep-inelastic scattering
experiments

« HERA ceased operations in 2007, the year before what we think as the jet
substructure revolution

* We must apply (or rethink) what we have learned about jets in pp
collisions to be ready for the Electron lon Collider (EIC)

1.2
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* For instance, jet angularities in DIS ol 02 o
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Future ep colliders :

qﬂ
(_
* The Breit frame plays a central role in DIS studies proton @ ——>
-
 Standard pp clustering algorithms not suited for objects at infinity
rapidities
* New Centauro algorithm
anti-kp(LI) Centauro anti-kr (SI)
P A TN e I N L IR
S e S e S Te,
AT T e T e i S NS
(- strufck quark iproton | S X -7 i | RS X -7 i | -
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2p dig =1 dip = E;*
diB = ppy B
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Conclusions

My hopes for 2020

e Can we come up with quantifiable metrics beyond performance |[* | ’ T |
for comparisons of different ML algorithms? Different metrics for
different applications?

[arXiv:1803.07977]

e |Is it possible to find ways to leverage performance gains from
ML methods in calculable and robust frameworks?

Tools and Methods s Machine Learning

e Can we perform precision calculations for other key
jet substructure observables? And compare these
calculations with measurements?

e |[s it possible to improve non-perturbative modelling,
e.g. through improvements of perturbative
component of parton showers?

Calculations 32

Conclusions

e Machine learning is here to stay.

e If a problem can be framed in the “right” way, ML can lead to real insights - but
it should be primarily viewed as tool!

e Precision calculations of jet substructure observables will be critical for future
measurements, notably for a_ extractions

e See you in Hamburg!
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“Robustness”: how much a ML tool
performance depends on physics we
do (not) control, e.g. leading-log, PS
at parton level, PS at hadron level

New taggers, groomers and
observables are often inspired by
theory, i.e. they are derived having
both robustness and performance
in mind
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Points for discussion

* Should we do what we know we are good at”?
e calculable observables have tremendous value on their own

* they can be input to ML algorithms and help us to crowbar
the damned black box!

* Should we try new ways of thinking about jets?

* It seems to me that a recurrent theme in the past year has
been geometry (not new for jets, but it’s seen a resurgence)

* |Is what we have “enough” for the LHC and it’s time to focus
theory imagination on future machines? If not, what are the
most pressing needs?
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Special thanks to: Jesse Liu, Lingfeng Li, Sung Hak Lim, Eric
Metodiev, Alba Soto Ontoso for providing inputs and materials
for this talk.

| hope | was able to represent their work in a decent way and

I’'m sure they will be happy to answer any question you might
have

Thank you very much!
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