Simone Marzani, Università di Genova & INFN Genova

place here nice picture of the conference venue

Theory Advances

What has occupied our minds lately?

What has occupied our minds lately?

VS

What has occupied our minds lately?

Big news from the LHC-XENON1T

- Despite all of this, it's been (as usual) an incredibly fruitful year for jet physics
- I will do my best to showcase some of the (in my personal opinion) interesting theory results

Looking back to 2019

My hopes for 2020

- Can we come up with quantifiable metrics beyond performance for comparisons of different ML algorithms? Different metrics for different applications?
- Is it possible to find ways to leverage performance gains from ML methods in calculable and robust frameworks?
- Can we perform precision calculations for other key jet substructure observables? And compare these calculations with measurements?
- Is it possible to improve non-perturbative modelling, e.g. through improvements of perturbative component of parton showers?

[arXiv:1803.07977]

The aim of this talk is to spark a discussion about how much progress we have made on these points

Conclusions

Frédéric Dreyer Boost 2019 Theory Summary

- Machine learning is here to stay.
- If a problem can be framed in the "right" way, ML can lead to real insights but it should be primarily viewed as tool!
- Precision calculations of jet substructure observables will be critical for future measurements, notably for α_s extractions
- See you in Hamburg!

Outline

- New tools (with and without machines): groomers, taggers, observables and new insights
- Opening the black box: machine-learning and expert-knowledge
- Looking ahead: jets for future colliders
- Conclusions

New tools (w/o machines)

Dynamical grooming

Find hardest branch in the C/A sequence, i.e.

$$\kappa^{(a)} = \frac{1}{p_T} \max_{i \in C/A} z_i (1 - z_i) p_{T,i} (\theta_i / R)^a$$

Drop all branches at larger angles

dynamical grooming

 grooming condition autogenerated on a jet-by-jet basis

• more aggressive grooming with deceasing α

Dynamical grooming

Dynamical grooming

- Recently applied to W and top tagging
- Good performance is found, comparable to recursive SoftDrop but with less fine-tuning

Color ring

- Design a simple and versatile colour-singlet tagger looking at the behaviour of matrix elements in the soft and limit
- Signal (colour singlet) and background are typically characterised by different colour correlations (we look at the boosted limit of the dipole)

$$\frac{|\mathcal{M}_{\mathcal{B}}|^2}{|\mathcal{M}_{\mathcal{S}}|^2} = \frac{C_{\mathcal{B}}}{C_{\mathcal{S}}} + \frac{\widetilde{C}_{\mathcal{B}}}{C_{\mathcal{S}}} \left(\frac{(n_a \cdot \bar{n})(n_b \cdot k)}{(n_a \cdot n_b)(\bar{n} \cdot k)} + \frac{(n_b \cdot \bar{n})(n_a \cdot k)}{(n_a \cdot n_b)(\bar{n} \cdot k)} \right) \quad \text{[up to monotonic functions]}$$

$$\simeq \frac{1 - \cos \theta_{ak} + 1 - \cos \theta_{bk}}{1 - \cos \theta_{ab}}$$

$$\mathcal{O} = \frac{\theta_{ak}^2 + \theta_{bk}^2}{\theta_{ab}^2}$$

Color ring

 Good performance in distinguishing singlet vs octet but performs worse with more complicated (QCD) backgrounds

- · Limitation probably due to modelling the extra (sub)jet with one soft gluon
- Interesting interplay with standard observable D2

Jets with Energy Correlators

Energy Flow Operators are natural objects in field theory

$$\mathcal{E}(\vec{n}) = \int_{0}^{\infty} dt \lim_{r \to \infty} r^2 n^i T_{0i}(t, r\vec{n})$$

- However, standard observables are not directly related to these operators (although moments are)
- Ian Moult will give more details in this talk Here I will only mention a few highlights

Jets with Energy Correlators

- To make contact with experiment, we would like to define observables that are distributions of one variable
- Starting from the two-point correlator, one can define consider higher points, integrating out the extra directions with some constraints
- This projected N-point correlators are an infinite family of jet observables
- We can go further and analytically continue in the complex plane $N \rightarrow V$
- Incorporating track information for these observables is much simpler than in the traditional case

$$\frac{d\sigma}{d\bar{e}} = \sum_{N} \int d\Pi_{N} \frac{d\bar{\sigma}_{N}}{d\Pi_{N}} \int \prod_{i=1}^{N} dx_{i} T_{i}(x_{i}) \delta\left[e - \hat{e}(\{x_{i}p_{i}^{\mu}\})\right] \qquad \text{VS}$$

$$E_{i} \rightarrow \int dx_{i} x_{i} T_{i}(x_{i}) E_{i} = T_{i}^{(1)} E_{i}$$

Geometry of events

- When are two collider events similar?
- Define a metric (Earth Energy Moving Distance) that tells us how much work is required to move one event to another one

$$\mathrm{EMD}_{\beta,R}(\mathcal{E},\mathcal{E}') = \min_{\{f_{ij} \geq 0\}} \sum_{i} \sum_{j} f_{ij} \left(\frac{\theta_{ij}}{R}\right)^{\beta} + \left|\sum_{i} E_{i} - \sum_{j} E'_{j}\right|$$

$$\mathrm{Cost\ of\ optimal\ transport}$$

$$\sum_{j} f_{ij} \leq E_{i}, \quad \sum_{i} f_{ij} \leq E'_{j}, \quad \sum_{ij} f_{ij} = \min\left(\sum_{i} E_{i}, \sum_{j} E'_{j}\right)$$

$$\mathrm{Capacity\ constraints\ to\ ensure\ proper\ transport}$$

 Theorists are alway happy when we can phrase a problem using geometry

Geometry of events

Six Decades of Collider Techniques as Geometry!

Event Isotropy

- Geometrical interpretation of collider events is in its infancy but has already produced some fruits
- New observable called event isotropy directly based on the Energy Mover's Distance of an event from a uniform energy distribution

see Cari Cesarotti video poster for details

Opening the black box

Jet tagging made easy

- Developing a set of multi-prong taggers exploiting N-subjettiness variables (see talks by A. Larkoski on q/g discrimination last year)
- The Authors develop here a phenomenological LoRD of Taggers which is build using and it's decorrelated from the mass

$$T = \bar{T} - b\rho - a \,,$$

$$\bar{T} = \sum_{n,\beta} c_n^{\beta} \log \tau_n^{(\beta)}$$

 $T = \bar{T} - b\rho - a$, • the coefficients c^{β_n} are determined via logistic regression on simulated training samples

Towards analytics for NN

- Exploit expert-knowledge of the underlying theory (QCD) to study the behaviour of a simple network
- Focussing on the question of quark/gluon discrimination, a novel version of *N-subjettiness*, which at leading-log is only sensitive to primary splittings

$$\mathfrak{I}_N = \sum_{i=N}^m z_i \left(\frac{\Delta_i}{R_0}\right)^{\beta}$$

 $\Im_N=\sum_{i=N}^m z_i\left(\frac{\Delta_i}{R_0}\right)^\beta$ • If one measure n such variables, the optimal discriminant at leading log is just a cut on the last one

$$\mathcal{L}^{\mathrm{LL}} = \left(\frac{C_A}{C_F}\right)^n \exp\left[-(C_A - C_F)\mathcal{R}(\mathfrak{I}_n)\right]$$

Towards analytics for NN

- The behaviour of the system and the optimal discriminant are so simple that we can ask ourselves whether a one-neuron network can achieve it
- We can determine (semi) analytically whether such simple network reaches optimal performance by looking for the cost function minima
- Remarkably, it depends on the functional form of the inputs!

- Classifiers exploiting convolutional NN and jet images typically outperform standard top taggers (a detailed comparison can be found here)
- What is a CNN-based top tagger learning?
- It has been argued that most of information that these classifiers exploit

come from IRC safe observables

 For Higgs tagging against QCD a NN classifier fed with IRC safe two-point EC performs similarly to more complex CNN

This is not the case for top tagging

- What is the role of IRC unsafe (counting) observables?
- Beyond counting: Minkowski functionals (well-developed integral geometry)

- What is the role of IRC unsafe (counting) observables?
- Beyond counting: Minkowski functionals (well-developed integral geometry)

1. Start with pixels with finite energy deposition $N^{(0)}$

- What is the role of IRC unsafe (counting) observables?
- Beyond counting: Minkowski functionals (well-developed integral geometry)

- 1. Start with pixels with finite energy deposition $N^{(0)}$
- 2. Count the number of pixels $N^{(0)}$ in a (2 i+1)x(2i+1) squares around each original pixel

- What is the role of IRC unsafe (counting) observables?
- Beyond counting: Minkowski functionals (well-developed integral geometry)

- 1. Start with pixels with finite energy deposition $N^{(0)}$
- 2. Count the number of pixels $N^{(0)}$ in a (2 i+1)x(2i+1) squares around each original pixel
- 3. The sequence of $N^{(i)}$ gives a quantitative description of the spatial distribution of pixels in the jet

 A top tagger is build using IRC safe (two-point EC) and IRC unsafe (Minkowski sequence) inputs to a NN

 The use of Minkowski sequence nicely fills the gap between the performance of the NN purely based on two-point EC and the CNN

Lookingahead

Higgs tagging @ HL-LHC

- Exposing the Higgs trilinear coupling is one of the main goal of the High-Luminosity LHC
- Incredibly challenging, it's even worse in the SM than you could have imagined because of destructive interference at Born level (calculating higher-order corrections is a fascinating topic... a story for another time)

• Higgs pair production cross-section 40fb, which implies 10⁵ di-Higgs events at HL-LHC but we have to fight a formidable multi jet background

Higgs tagging @ HL-LHC

Higgs tagging @ HL-LHC

What is the machine learning? Using the SHapley Additive exPlanations

framework

Higgs boost important in high boost regimes

Angular separation of sub-jets powerful

Future etecolliders

- Issues with jet clustering:
 - information distortion: hadrons from different Z clustered in the same jet
 - information loss: jet algorithms map particles momenta into a lowerdimensional space
- at lepton colliders we can successfully use event shapes that avoid jet clustering

cumulative Mollweide projection (10⁴ events):

- z axis along the beams
- x axis in the direction of the most energetic particles

Future etecolliders

- Fox-Wolfram moments of the energy distribution are considered
- evident analogies with CMB power spectrum

- physics at characteristic scales shows up as "acoustic peaks"
- partonic channels
- tail sensitive to hadronisation

Future ete colliders

- Train a Deep Neural Network with different strategies, involving jets, track or images
- study on the achievable precision for the Higgs width for collisions at 240 GeV and 5ab⁻¹

	Jet	Jet+FW J	Jet+FW+tra	ck Image	Image+tracl
Precision (%)	J1	J2	Ј3	E1	E2
$\sigma(Z_{\nu}h_{W_{lq}})$	1.7 (1.6)	1.4 (1.6)	1.5 (1.6)	1.5 (1.4)	1.5 (1.4)
$\sigma(Z_{ u}h_{W_{qq}})$	1.6 (1.6)	1.2 (1.2)	1.1 (1.1)	1.1 (1.1)	1.1 (1.1)
$\sigma(u\nu h_h)$	2.8(2.7)	1.8(1.7)	1.9(1.8)	1.4 (1.4)	1.3 (1.3)
Γ_h	$3.2^{+0.9}_{-0.3} (3.1)$	$2.3^{+0.7}_{-0.2} (2.2)$	$2.3^{+0.7}_{-0.2} (2.3)$	$1.9^{+0.5}_{-0.1} (1.9)$	$1.9^{+0.4}_{-0.1} (1.9)$

 the precision achieved is robust against the rescaling of detector resolutions and different detector templates

Future ep colliders

- Our understanding our QCD is founded on deep-inelastic scattering experiments
- HERA ceased operations in 2007, the year before what we think as the jet substructure revolution
- We must apply (or rethink) what we have learned about jets in pp collisions to be ready for the Electron Ion Collider (EIC)
- For instance, jet angularities in DIS

$$\tau_{a} = \frac{2}{Q^{2}} \sum_{i \in \mathcal{X}} min \left\{ (q_{B}.p_{i}) \left(\frac{q_{B}.p_{i}}{q_{J}.p_{i}} \right)^{-a/2}, (q_{J}.p_{i}) \left(\frac{q_{J}.p_{i}}{q_{B}.p_{i}} \right)^{-a/2} \right\}$$

Future ep colliders

- The Breit frame plays a central role in DIS studies
- Standard pp clustering algorithms not suited for objects at infinity rapidities
- New Centauro algorithm

My hopes for 2020

- Can we come up with quantifiable metrics beyond performance for comparisons of different ML algorithms? Different metrics for different applications?
- Is it possible to find ways to leverage performance gains from ML methods in calculable and robust frameworks?
- Can we perform precision calculations for other key jet substructure observables? And compare these calculations with measurements?
- Is it possible to improve non-perturbative modelling, e.g. through improvements of perturbative component of parton showers?

[arXiv:1803.07977]

Conclusions

- Machine learning is here to stay.
- If a problem can be framed in the "right" way, ML can lead to real insights but it should be primarily viewed as tool!
- Precision calculations of jet substructure observables will be critical for future measurements, notably for α_s extractions
- See you in Hamburg!

My hopes for 2020

- Can we come up with quantifiable metrics beyond performance for comparisons of different ML algorithms? Different metrics for different applications?
- Is it possible to find ways to leverage performance gains from ML methods in calculable and robust frameworks?
- Can we perform precision calculations for other key jet substructure observables? And compare these calculations with measurements?
- Is it possible to improve non-perturbative modelling, e.g. through improvements of perturbative component of parton showers?

Conclusions

- I don't think we are there yet but progress has been made
- "Robustness": how much a ML tool performance depends on physics we do (not) control, e.g. leading-log, PS at parton level, PS at hadron level
- New taggers, groomers and observables are often inspired by theory, i.e. they are derived having both robustness and performance in mind
- Machine learning is here to stay.
- If a problem can be framed in the "right" way, ML can lead to real insights but it should be primarily viewed as tool!
- Precision calculations of jet substructure observables will be critical for future measurements, notably for α_s extractions
- See you in Hamburg!

My hopes for 2020

- Can we come up with quantifiable metrics beyond performance for comparisons of different ML algorithms? Different metrics for different applications?
- Is it possible to find ways to leverage performance gains from ML methods in calculable and robust frameworks?
- Can we perform precision calculations for other key jet substructure observables? And compare these calculations with measurements?
- Is it possible to improve non-perturbative modelling, e.g. through improvements of perturbative component of parton showers?

Conclusions

- Machine learning is here to stay.
- If a problem can be framed in the "right" way, ML can lead to real insights but it should be primarily viewed as tool!
- Precision calculations of jet substructure observables will be critical for future measurements, notably for α_s extractions
- See you in Hamburg!

- I don't think we are there yet but progress has been made
- "Robustness": how much a ML tool performance depends on physics we do (not) control, e.g. leading-log, PS at parton level, PS at hadron level
- New taggers, groomers and observables are often inspired by theory, i.e. they are derived having both robustness and performance in mind

to Ian Moult

I leave the questions

about calculations

My hopes for 2020

- Can we come up with quantifiable metrics beyond performance for comparisons of different ML algorithms? Different metrics for different applications?
- Is it possible to find ways to leverage performance gains from ML methods in calculable and robust frameworks?
- Can we perform precision calculations for other key jet substructure observables? And compare these calculations with measurements?
- Is it possible to improve non-perturbative modelling, e.g. through improvements of perturbative component of parton showers?

progress has been made"Robustness": how much a ML to

I don't think we are there yet but

- "Robustness": how much a ML tool performance depends on physics we do (not) control, e.g. leading-log, PS at parton level, PS at hadron level
- New taggers, groomers and observables are often inspired by theory, i.e. they are derived having both robustness and performance in mind

Conclusions

I leave the questions about calculations to lan Moult

- Machine learning is here to stay.
- If a problem can be framed in the "right" way, ML can lead to real insights but it should be primarily viewed as tool!
- Precision calculations of jet substructure observables will be critical for future measurements, notably for α_s extractions
- See you in Hamburg!
 I wish this happened

Points for discussion

- Should we do what we know we are good at?
 - calculable observables have tremendous value on their own
 - they can be input to ML algorithms and help us to crowbar the damned black box!
- Should we try new ways of thinking about jets?
 - it seems to me that a recurrent theme in the past year has been *geometry* (not new for jets, but it's seen a resurgence)
- Is what we have "enough" for the LHC and it's time to focus theory imagination on future machines? If not, what are the most pressing needs?

Points for discussion

- Should we do what we know we are good at?
 - calculable observables have tremendous value on their own
 - they can be input to ML algorithms and help us to crowbar the damned black box!
- Should we try new ways of thinking about jets?
 - it seems to me that a recurrent theme in the past year has been *geometry* (not new for jets, but it's seen a resurgence)
- Is what we have "enough" for the LHC and it's time to focus theory imagination on future machines? If not, what are the most pressing needs?

Special thanks to: Jesse Liu, Lingfeng Li, Sung Hak Lim, Eric Metodiev, Alba Soto Ontoso for providing inputs and materials for this talk.

I hope I was able to represent their work in a decent way and I'm sure **they** will be happy to answer any question you might have

Thank you very much!