

Motivation: Explain ML decisions of identification of jets Using augmented expert variables (XAUG).

ML classifier.

augmented expert (XAUG) variables

 $p_T \quad \eta \quad \phi \quad \tau \quad P_e \quad P_\mu \quad P_\gamma \quad P_\pm \quad P_0 \quad \theta_P$

Augmented ML classifier

Deep Neural Network Information propagates forward through the network as a function of the inputs, weights, and biases to make a decision.

 $z_j = \sum_i x_i w_i + b$

Deep Neural Nelwork

 $+x_2w_2$

Deep Neural Network Information propagates forward through the network as a function of the inputs, weights, and biases to make a decision.

 $z_j = \sum_i x_i w_i + b$

Castle

Consider a trivial DNN which has been trained on only the circles and square shown in the plot as inputs. The ovals represent where the full dataset lives.

 $\times 1$ represents the decision boundary of the minima.

X2

X2

X2

X2 /

X2

X1

*2

X2

X1

Layerwise Relevance Propagation To discover whether or not a network's decision-making is meaningful, we employ LRP.

the total relevance score, R.

Layerwise Relevance Propagation The total relevance is distributed among the weights, until reaching the input, where it is further distributed among the relevant features.

Layerwise Relevance Propagation Pixels supporting the prediction

Pixels opposing the prediction

Toy Model - Input variables

Toy Model Radii values

Signal Jet Images

2D Convolution

2D Convolution

Summed Background Image

Correctly predicted Background Images

Correctly predicted Signal Image

25 20

Correctly predicted Signal Image

Toy Model w/ expert variables - LRP This toy model performs with 100% accuracy on the jet images alone, but if we add expert variables, we can see what the network chooses as most useful among these inputs.

 10^{-2}

z θ R

"signo

Toy Model w/ expert variables - LRP

Toy Model - LRP for XAUG Variables

1.0 0.8 Relevance Score 0.6 0.4 0.2 0.0 Image

 r_1

We see that the z input, that with the greatest separation between the toy "signal" and "background", has the greatest relevance to the XAUG toy model.

Pychia Simulation

CMS Experiment at the LHC, CERN Data recorded: 2015-Jul-12 06:52:51.677888 GMT Run / Event / LS: 251562 / 310157776 / 347

Pychia Simulation

$\frac{z}{z}$

simulated with pythias,

AK8 jets from fastjet Pt > 200 GeV

N-subjettiness from fastjet-contrib: WTA KT axis Normalized

Background Jet Images

Pychia Simulation - Preprocessing

simulated with pythias SM ZZ and QCD

AK8 jets from fastjet Pt > 200 GeV

N-subjettiness from fastjet-contrib: WTA KT axis Normalized

Compute AKS jets

Pychia Simulation - Preprocessing

MMDT / soft drop eta=0 with $z_{cut}=0.1$

Calculate subjets

Project to 2d plance

Robate Leading subjet to (0,0)

Pythia Simulation - Preprocessing

Place subleading subjet at (0,1)

Pychia Simulation - Preprocessing

Scale intensities as $p_T/p_{T;jet}$

Tada!

Pychia Simulation – LRP

Background Jet Images Heat Map

Pychia Simulation – LRP

14 12 10

Background Jet Images

Background Jet Images Heat Map

Pychia Simulation – LRP

Signal Jet Images

Background Jet Images

10-1

Signal Jet Images

Background Jet Images

centralized activity

∎ 10¹ 100 10-1 10-2 10-3 0 -10^{-3} -10^{-2} -10^{-1} -10^{0} -10^{1}

Pychia Simulation – LRP XAUCS

Pychia Simulation – LRP XAUCS

Pythia Simulation - LRP Profiles of three mast relevant inputs

LRP Profiles

Gives insights into network behavior XAUG Variables capture features in network Can improve performance of networks, or reveal when they exhaust available information

Coming scon.

LRP with XAUCES can...

Reduce complexity of laggers

Apply to anomaly detection

Explore new expert variables

- A. J. Larkoski, I. Moult, and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1-63, [arXiv:1709.0446].
- R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019), no. 4 045003, [arXiv:1803.0699]
- W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, Definitions, methods, and applications in interpretable machine learning, Proceedings of the National Academy of Sciences 116 (Oct, 2019) 22071-22080.
- PLOS ONE 10 (07, 2015) 1-46.
- K. Datta and A. Larkoski, How Much Information is in a Jet?, JHEP 06 (2017) 073, [arXiv:1704.0824].
- J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02(2015) 118, [arXiv:1407.5675]
- L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, Jet-images deep learning edition, JHEP 07 (2016) 069, [arXiv:1511.0519].
- J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03(2011) 015, [arXiv:1011.2268]
- J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093, [arXiv:1108.2701]
- Commun. 191 (2015) 159–177, [arXiv:1410.3012]
- M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C72 (2012) 1896, [arXiv:1111.6097]
- M. Cacciari, G. P. Salam, and G. Soyez, The anti-kT jet clustering algorithm, JHEP04(2008) 063, [arXiv:0802.1189]
- M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029, [arXiv:1307.0007]
- A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft Drop, JHEP 05(2014) 146, [arXiv:1402.2657]

• S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. MÃŒller, and W. Samek, On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation,

• CMS Collaboration, C. Collaboration, Machine learning-based identification of highly Lorentz-boosted hadronically decaying particles at the CMS experiment, CMS-JME-18-002

• T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel C. O. Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys.

Our Leam

Lauren Hay

Benjamin Mannix

Morris Agarwal

Margaret Garvita

Graduate students

Christine

Ulrich McLean Schubert

Ia Sal Iashvili Rappoccio Professors

