
XAI for ML Jet Taggers



“Signal”

Motivation:
Explain ML decisions of identification of jets 
Using augmented expert variables (XAUG).

+
Augmented ML classifier

Explain!
augmented expert  
(XAUG) variables

ML classifier
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Deep Neural Network
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Information propagates forward through the network as a 
function of the inputs, weights, and biases to make a 
decision.
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Deep Neural Network

Inputs Castle
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Information propagates forward through the network as a 
function of the inputs, weights, and biases to make a 
decision.
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Consider a trivial DNN which has been trained on only the 
circles and square shown in the plot as inputs.  
The ovals represent where the full dataset lives.
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Trained on only the shapes in the plot, the network could 
fall into various local minimum, where the dashed lines 
represents the decision boundary of the minima.
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However, not all of these minima accurately categorize the 
full dataset. We want to ensure that a network has fallen 
into a minima representative of the full dataset.
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Want predictions supported by meaningful patterns in 
data.



Layerwise Relevance Propagation

Inputs Castle
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To discover whether or not a network’s 
decision-making is meaningful, we 
employ LRP.



Layerwise Relevance Propagation

Inputs Castle
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LRP propagates the output back to the input 
while conserving the value of the output as 
the total relevance score, R.



Layerwise Relevance Propagation
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The total relevance is distributed among the weights, 
until reaching the input, where it is further distributed 
among the relevant features.



Layerwise Relevance Propagation
Pixels supporting  
the prediction

Pixels opposing 
the prediction



Consider a Toy Model...



… where an event’s jets are 
represented as images.
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Toy Model - Input variables



Toy Model - Images



Toy Model - Forward Propagation



2D Convolution

Toy Model - Forward Propagation



2D Convolution



Max Pooling

Flatten2D Convolution

“Signal”

RELU

Toy Model - Forward Propagation



Toy Model - LRP

“Signal”



Toy Model - LRP

“Signal”





separated 
subjets

Looking 
for subjet

centralized 
subjets





Activity separated :  
signal!

Activity centered: 
background!

Toy Model - Single Events



Toy Model w/ expert variables - LRP

“Signal”

z θ R

This toy model performs with 100% accuracy on the 
jet images alone, but if we add expert variables, we 
can see what the network chooses as most useful 
among these inputs.
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Toy Model w/ expert variables - LRP
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Toy Model - LRP for XAUG Variables



Toy Model - LRP for XAUG Variables

We see that the z input, that with the greatest separation 
between the toy “signal” and “background”, has the 
greatest relevance to the XAUG toy model. 



Pythia Simulation



Pythia Simulation



Z jet
Light jet

Simulated with pythia8, 
 
AK8 jets from fastjet 
   Pt > 200 GeV 
 
N-subjettiness from 
   fastjet-contrib:  
   WTA KT axis 
   Normalized

Pythia Simulation



Pythia Simulation

Simulated with pythia8 
    SM ZZ and QCD 
 
AK8 jets from fastjet 
   Pt > 200 GeV 
 
N-subjettiness from 
   fastjet-contrib:  
   WTA KT axis 
   Normalized 

Compute AK8 jets

 - Preprocessing



Calculate subjets

mMDT / soft drop  
         with zcut = 0.1� = 0

Pythia Simulation - Preprocessing



Project to 2d plane

Pythia Simulation - Preprocessing



Rotate leading 
subjet to (0,0)

Pythia Simulation - Preprocessing



Place subleading 
subjet at (0,1)

Pythia Simulation - Preprocessing



Scale intensities as

Pythia Simulation - Preprocessing

pT /pT ;jet



Tada!
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Pythia Simulation - Preprocessing
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2D Convolution

Max Pooling

Flatten

Concat.

“Background”

- Forward PropagationPythia Simulation



“Background”

pT ϕ τη Pe P0PγPμ P± θP

- LRPPythia Simulation



“Background”
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- LRPPythia Simulation

Background Jet Images Heat Map



- LRPPythia Simulation

Background Jet Images Heat Map



- LRPPythia Simulation

Background Jet Images Heat Map

Signal JetImages Heat Map



- Single EventsPythia Simulation

separated 
activity

centralized 
activity
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*ungroomed

XAUGS
- LRPPythia Simulation



*ungroomed

XAUGS
- LRPPythia Simulation



- LRP Profiles of threePythia Simulation
most relevant inputs



LRP Profiles

Can improve performance of networks, or reveal when they exhaust 
available information

Gives insights into network behavior

XAUG Variables capture features in network



Coming soon…
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Reduce complexity of taggers 

Explore new expert variables

Apply to anomaly detection

LRP with XAUGs can…



• A. J. Larkoski, I. Moult, and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 
1–63, [arXiv:1709.0446].


• R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019), no. 4 045003, [arXiv:1803.0699]


• W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, Definitions, methods, and applications in interpretable machine learning, Proceedings of the National Academy 
of Sciences 116 (Oct, 2019) 22071–22080.


• S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. MÃŒller, and W. Samek, On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation, 
PLOS ONE 10 (07, 2015) 1–46.


• K. Datta and A. Larkoski, How Much Information is in a Jet?, JHEP 06 (2017) 073, [arXiv:1704.0824].


• CMS Collaboration, C. Collaboration, Machine learning-based identification of highly Lorentz-boosted hadronically decaying particles at the CMS experiment, CMS-JME-18-002


• J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02(2015) 118, [arXiv:1407.5675]


• L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069, [arXiv:1511.0519].


• J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03(2011) 015, [arXiv:1011.2268]


• J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093, [arXiv:1108.2701]


• T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel C. O. Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. 
Commun. 191 (2015) 159–177, [arXiv:1410.3012]


• M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C72 (2012) 1896, [arXiv:1111.6097]


• M. Cacciari, G. P. Salam, and G. Soyez, The anti-kT jet clustering algorithm, JHEP04(2008) 063, [arXiv:0802.1189]


• M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029, [arXiv:1307.0007]


• A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft Drop,JHEP 05(2014) 146,[arXiv:1402.2657]

References



Our team



Professors

Ia 
Iashvili

Sal 
Rappoccio

Our team

Postdocs

Christine 
McLean

Ulrich 
Schubert

Graduate students

Lauren 
Hay

Benjamin  
Mannix

Garvita 
Agarwal

Margaret 
Morris Boostemos!


