

Strand-Jacket Contact thermal resistance measurement on dummy conductors

Rui Kang, Davide Uglietti, Changtao Kan 09.07.2019

Szczecin

1. Motivation

Thermal contact resistance (H_{si}) between strand and jacket is

$$\dot{q}_{sj} = \frac{T_s - T_j}{H_{sj}}$$
 H_{sj} is in Km/W Soldered HTS stack

For modelling:

- An important input parameter
- Influenced by many factors: material type, roughness, temperature, contact area and pressure...
- Difficult to estimate
- Few relevant literatures can be found

For conductor design:

- > CS conductor has large cross section of steel, which dominates the heat capacity at temperature above 20 K
- > TCR decides how this huge heat capacity participates quench behavior of conductor

2. Method

The thermal equation can be descript with:

$$A_{Cu}C_{Cu}\rho_{Cu}\frac{\partial T_{Cu}}{\partial t} + \frac{(T_{Cu} - T_{SS})}{H} + \frac{(T_{Cu} - T_{SS})}{H_{air_in}} = Q_{Cu} \dots (1)$$

$$A_{SS}C_{SS}\rho_{SS}\frac{\partial T_{SS}}{\partial t} + \frac{(T_{SS} - T_{Cu})}{H} + \frac{(T_{SS} - T_{cu})}{H_{air_in}} + \frac{\left(T_{SS} - T_{air_out}\right)}{H_{air_out}} = Q_{SS} \dots (2)$$

Introduce

$$\frac{1}{H_0} = \frac{1}{H} + \frac{1}{H_{air\ in}}$$

$$\frac{1}{H_0} = \frac{1}{H} + \frac{1}{H_{air_in}}$$

$$H_0 = \frac{(T_{Cu} - T_{SS})}{Q_{Cu} - A_{Cu}C_{Cu}\rho_{Cu}\frac{\partial T_{Cu}}{\partial t}}$$

At 300 K, $\rho_{ss}:\rho_{cu}\sim40$

→ heat copper with current.

3. Triplet dummy

Taking 400 s as an example:

$$T_{Cu} - T_{ss} = 8.98-5.79 \text{ K} = 3.19 \text{ K}$$

$$\frac{\partial T_{Cu}}{\partial t} = 0.015 \text{ K/s}$$

$$Q_{Cu} = 12.7 \text{ W/m}$$

$$A_{Cu}C_{Cu}\rho_{Cu}$$
= 291 J/mK

$$\rightarrow$$
 H₀ = 0.38 Km/W

4. Heat exchange with air

During cooling down, T_{cu} and T_{ss} soon become the same, and:

$$(A_{Cu}C_{Cu}\rho_{Cu} + A_{SS}C_{SS}\rho_{SS})\frac{\partial T}{\partial t} + \frac{(T - T_{air})}{H_{air}} = 0$$

$$T = e^{r_0 t} + T_{air}$$

$$r_0 = -\frac{1}{(A_{Cu}C_{Cu}\rho_{Cu} + A_{ss}C_{ss}\rho_{ss})H_{air}}$$

$$r_0 \approx -0.0013 \text{ s}$$

 $A_{ss}C_{ss}\rho_{ss}$ = 259.3

 \rightarrow H_{air}= 1.4 Km/W \rightarrow H = 0.5 Km/W (for triplet cable)

For each strand, H is about 1.5 Km/W.

5. Some facts

After conductor manufacture:

What will be the contact length and pressure?

When cooling down:

- Thermal strain could influence the contact length and pressure;
- Thermal conductance of material (metals and alloys) reduces.

When charged:

- Cable is pushed to one side by the Lorenz force, which influence the contact length and pressure.
- Could this dominants the effect of pressure?

During quench:

- Temperature is increasing (5 K to 250 K);
- Contact pressure is dropping once current starts to dump;

Roughness, can it vary a lot?

The roughness of the copper and steel used in measurement are respectively 250 μm and 300 μm.

6. Scaling to operating condition

TCR V.S. Pressure

Torque wrench is used to apply a certain pressure through the bolt

- TCR decrease rapidly with contact pressure when pressure is below 10 MPa. Above that, it hardly changes and is around 0.1 Km/W.
- The transverse pressure for our strand is about 10 Mpa.
- From 300 K and 0 T (RT) to 4.75 K and 17.5 T, heat conductance of copper reduce from 386 W/Km to 102 W/Km.
- For steel, it is from 15 W/Km to 0.3 W/Km. Which dominants, copper or steel?
- An estimation of TCR at operation is then 0.1*386/102~0.4 Km/W or 0.1*15/0.3~5 Km/W (or some value in between).

7. Other layouts

Current = 400 A

8. Summary

- ➤ During operation, the strand-jacket thermal contact resistance could be roughly estimated as 0.4-5 Km/W, the contact pressure of which is dominated by Lorenz force.
- Fill the void with soldered or smaller copper wires are benefit for reduce the thermal contact resistance, but they also lead to different conductor layouts, which need further study.

Thank you for your attention!

