

Field Quality Analysis in the HTS Dipole Insert-Magnet Feather M2 with the Finite Element Method

09-12 July 2019

L. Bortot^{1,2}, M. Mentink¹, C. Petrone¹, S. Schöps², J. Van Nugteren¹, A. Verweij¹

Bundesministerium für Bildung und Forschung

This work is supported by:

(*) The 'Excellence Initiative' of the German Government and by the Graduate School of Computational Engineering at TU Darmstadt; (**) The Gentner program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).

High-Temperature Superconductors

Cuprate compounds (CuO_2) doped with rare earth elements (La, Bi-Sr-Ca, Y-Ga-Ba ...)

- Higher Tc and Bc0 respect to the traditional low-temperature superconductors (LTS)
- Higher performance comes with higher prices! $\frac{1}{2}H_T \approx 1e^2 \frac{1}{2}H_T \approx$

.. But in the early 2000s it was $\approx 1e^3$

Outline

- **A. Introduction**
- **B. Motivation**
- **C. Formulation**
- **D. Verification** Theoretical references
- **E. Validation** Measurements from Feather2
- **F. Summary and Outlook**

Feather2 magnet: net magnetic flux density contribution due to screening currents (first quadrant)

Introduction: Field Quality

Magnet aperture Ω _a 2D magnetostatic field $\nabla^2 \mathbf{A_z} = 0$

General Solution: Fourier expansion series $B_r(r, \varphi) = \sum$ $n=1$ ∞ $nr^{n-1}\gamma_n \cos(n\varphi) + nr^{n-1}\delta_n \sin(n\varphi)$ $A_n(r)$ $B_n(r)$

- $A_n(r)$, $B_n(r)$ live on boundary Γ_a
- skew and normal magnetic field multipoles
- Determined by measurements (rotating coil)

Distortion Factor (metrics for field quality)

$$
F_{d,1}(r_0) = \frac{1}{B_1(r_0)} \sqrt{\sum_{n=2}^{k} [A_n(r_0)^2 + B_n(r_0)^2]}
$$

Cross section of the beam pipe

Introduction: Field Multipoles

Normal field multipoles for the reference circumference $r_0 = 1$ m

Introduction: Screening (Eddy) Currents

ReBCO tape in an external magnetic density \vec{B} :

- Magnetic field variation $\partial_t \vec{B}$: \rightarrow Screening currents \vec{j}_{screen}
- \cdot $\rho \to 0 \to$ Persistent magnetization \vec{B}_{screen}
- Large filament size (4~12 mm), significant persistent magnetization: Field quality, especially at low field Thermal behavior, principal Joule loss contribution

Motivation

Design of future HTS magnets for accelerators

- Screening currents dynamics shall be taken into account
- Field error due to screening currents shall be corrected, especially at low field

A code with this purpose shall be:

- Numerically stable
- Scalable to accelerator magnets
- Validated, reliable, maintainable
- Optionally:
- Capable of field-circuit coupling
- **Ffficient**

Our contribution

- Investigation and extension of a suitable field formulation
- Implementation in a proprietary software (*), using the Finite Element Method
- Scaling of the field formulation to an HTS magnet (Feather2)

(*) COMSOL Multiphysics® v. 5.3. www.comsol.com. Last access: 01/07/2019

Formulation: 1) Mixed Fields

Mixed potentials

- Domain decomposition
- \vec{A} solved in Ω_A (air, iron), where $\sigma \rightarrow 0$
- \vec{H} solved in Ω_H (conductors), where $\rho \to 0$:
- **T** soved everywhere

Discrete weak formulation:

Ampere-Maxwell Faraday Heat Balance Field coupling Circuit coupling

Finite material properties \rightarrow bounded condition number \rightarrow Numerical stability

Formulation: 2) Model Order Reduction

Model order reduction \rightarrow Speed-up

High aspect ratio Tapes as surfaces in \mathbb{R}^3 (lines in \mathbb{R}^2)

2D transverse field configuration

Tapes as lines in \mathbb{R}^2

Electric field balance in the superconductor

- External E_s , Resistive E_r , Inductive E_i
- Current sharing resolved with root finding algorithm

with $E_s = -\chi_z v_s$

- χ _z as voltage distribution function
- v_s external voltage supply
	- **Input**, if voltage driven model
	- **Lagrange multiplier**, if current driven model

Roebel Cables \rightarrow **Transposition** \rightarrow **Even current distribution in the tapes**

Model order reduction

Outline

- **A. Introduction**
- **B. Motivation**
- **C. Formulation**
- **D. Verification**

Theoretical references

- 1. Critical State (Bean) Model
- 2. Skin Effect
- 3. Field Dependency
- **E. Validation**
- **F. Summary and Outlook**

Verification – 1. Critical State (Bean) Model

Scenario: magnetic field diffusion $n_{\text{powerLaw}} = \infty$ (1e³), $J_c = J_{c0}$ $\rightarrow \rho = \{0; \rho_c\}$

Geometry: slab of infinite height, modelled as stack of tapes

Source: boundary field H_s

Reference: Analytical solution:

 $H_{sol}(x,t) = x \cdot J(x,t)$ $J(x,t) = \{0; \pm J_{c0}(sign(H))\}$

Source term

Verification – 1. Critical State (Bean) Model

Numerical Solution: magnetic field diffusion

Magnetic flux density and normalized current density distribution

 \rightarrow Distributions consistent with theory

Verification – 2. Skin Effect

Scenario: magnetic field diffusion

 $n_{\text{powerLaw}} = 1$, $J_c = J_{c0}$ $\rightarrow \rho = \text{const}$

Geometry: bulk material, modelled as stack of tapes

Source: boundary field H_s

Reference: Analytical solution:

 $H_{sol} = H_s(1 - f_{\text{erf}}(\xi))$

 $f_{\text{erf}}(\xi)$ Gaussian error function $\xi = \frac{x}{2\sqrt{1-x^2}}$ $2\sqrt{k(t-t^*)}$ Similarity variable $k = \rho{\mu_0}^{-1}$ Magnetic diffusivity

Numerical Solution: magnetic field diffusion

Magnetic flux density distribution in the conductive slab

Magnetic flux density distribution at x=1 mm, as function of time: numerical solution (sol) and analytical solution (ref)

 \rightarrow Consistent with theory [6]

Verification – 3. Field Dependency

Verification – 3. Field Dependency

Numerical Solution: AC loss due to screening currents

AC loss / Cycle

Ac loss per cycle, as function of the applied field

Ac loss per cycle, as function of frequency, for $H < H_p$

AC loss / Cycle

 \rightarrow Consistent with theory

Outline

- **A. Introduction**
- **B. Motivation**
- **C. Formulation**
- **D. Verification**

E. Validation

Crosscheck and Benchmark

Measurements on Feather2: Field quality assessment

- 4. Magnetic Field Quality
- 5. Screening Current Effects
- **F. Summary and Outlook**

Crosscheck

Reference model based on the \vec{H} formulation, available at http://www.htsmodelling.com

2D model of a Single HTS tape in self-field Source: $I_s = I_0 \sin(2\pi ft)$, $I_0 = 2I_{crit}$ t $\in [0; 1]$

Benchmark

Forecasts on expected computational time:

Same physics…

CPU: Intel Core i7-3770 @ 3.40GHz. RAM: 32 Gb. OS: Win 10

Feather2 Dipole Insert Magnet

Courtesy of J. Van Nugteren

Measurements on Feather2

Scenario: magnetic field quality in the Feather M2 insert dipole magnet

 $n = 20$, $J_c(T, B, \theta)$

 \rightarrow ρ as anisotropic power law, derived from data @ 77 K Uncertainty in material properties

Geometry: tapes modelled as lines

Source: measured current

Reference: measurements carried out by *C. Petrone* (CERN)

Computational domain

21

Modelling of Jc (T, B, θ)

- J_c available only for T = 77 K \rightarrow Need for a lift factor
- Calibrated with the measured critical current I_c
- Gauged with $\theta = 30^\circ$ (magnetostatic simulation)

\rightarrow Anisotropy included in the model, but uncertainty on material properties

Field Quality Assessment

Pre-cycle \rightarrow first magnetization Steps of 250 A, plateaus of 120 s: decay of inductive effects Evaluation points ${p_{i,up}, p_{i,dn}}$

- 1. FEM simulation
- 2. Magnetic field quality calculation
- 3. Persistent screening currents contribution:

Calculation of change in magnetic field quality (assuming screening currents as dominant mechanism)

Results – FEM Simulation

Normalized current density in the coil, shown for the first quadrant

DARMSTADT

Validation – 4. Magnetic Field Quality

 \rightarrow Very good agreement with measurements

Validation – 5. Screening Currents

 $\Delta \textbf{b}_i$ field multipole variations, as function of current (in kA)

Measurement Simulation

 \rightarrow Good agreement with measurements, considering uncertainty in J_c(T, B, θ)

Summary and Outlook

Summary

- $\overrightarrow{A}-\overrightarrow{H}$ weak formulation for FEM:
- 1. Excellent agreement with theory

 $W/m²$

10

- 2. Consistency with Feather2 measurements
- 3. Stable, scalable and fast (few hours for $\sim 10^4$ tapes in 2D models)

Outlook

- 1. Include heat balance equation
- 2. Develop field-circuit coupling interface
- 3. Include the models in the STEAM co-simulation framework
- Run field quality analysis and optimization
- Run quench protection studies (e.g., Feather2 in FRESCA2)

Thank you for your attention!

References

- 1. Bíró, O. "Edge element formulations of eddy current problems." *CMAM* 169.3-4 (1999): 391-405.
- 2. Carpenter, C. J. "Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies." *Proceedings of the Institution of Electrical Engineers*. Vol. 124. No. 11. IET Digital Library, 1977.
- 3. Brambilla, R., Grilli, F., Martini, L., Bocchi, M., & Angeli, G. (2018). A finite-element method framework for modeling rotating machines with superconducting windings. *IEEE Transactions on Applied Superconductivity*, *28*(5), 1-11.
- 4. Zhang, H., et al. "An efficient 3D finite element method model based on the T–A formulation for superconducting coated conductors." *SuST*, 30.2 (2016): 024005
- 5. Schöps, S., et al. "Winding functions in transient magnetoquasistatic field-circuit coupled simulations." *COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering* 32.6 (2013): 2063-2083
- 6. Russenschuck, S. *Field computation for accelerator magnets: analytical and numerical methods for electromagnetic design and optimization*. John Wiley & Sons, 2011.
- 7. Knoepfel, H. E., Magnetic fields: a comprehensive theoretical treatise for practical use. John Wiley & Sons, 2008
- 8. Brandt, E H., "Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs." *Physical review B* 54.6 (1996): 4246
- 9. Van Nugteren, J., et al. "Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K." *SuST* 31.6 (2018): 065002.

…Why HTS?

Circular accelerators for particle physics: circular orbit $\mathbf{F}_{Lorentz} = -\mathbf{F}_{centripetal}$

$$
q(\mathbf{v} \times \mathbf{B}) = -\frac{mv^2}{r}(N) \rightarrow r = \frac{mv^2}{qvB}(T)
$$

$$
r_{\text{[km]}} \approx 3 \frac{p_{\text{[TeV/c]}}}{B_{\text{[T]}}}
$$

Just for fun

LHC tunnel + HTS dipoles everywhere @ 4.2 K, 30 T:

$$
p \approx \frac{1}{3} \cdot \frac{27}{2\pi} \cdot 30 \approx 40 \text{ [TeV/c]}
$$

Collision energy of the Future Circular Collider (FCC): $p = 50$ [TeV/c] … not so far away after all!

Verification – Current dependency

t

Verification – Current dependency

Solution of the transport + screening currents problem

Ac loss per cycle, as function of the applied current. Trends are highlighted with dashed lines

Ac loss per cycle, as function of frequency, for $I < I_c$. Trends are highlighted with dashed lines

 \rightarrow Consistent with previous research

Magnetic field dynamics in superconductors

Type I: Meißner Effect

- Thermodynamical state, reversible
- London equation

 $\Delta \vec{B} - \lambda^{-2} \vec{B} = 0$, if $B < B_{c1}$

Type II: Abrikosov fluxons

- Flux pinning and motion, irreversible
- Power-law (phenomenological)

$$
\rho\big(\overrightarrow{B},T\big)=\frac{E_c}{J_c(\overrightarrow{B},T)}\bigg(\frac{J}{J_c(\overrightarrow{B},T)}\bigg)^{n-1}
$$

• Faraday Law (eddy currents)

$$
\Delta \vec{H} - \mu \rho^{-1} \partial_t \vec{H} = 0
$$

•

Formulation - Mixed potentials

− **formulation, weak form:**

- 1. Ω_0 → Ampere-Maxwell Law
- 2. Ω_c → Faraday Law
- 3. Ω_c → Constraint on transport current

1.
$$
\begin{bmatrix} \mathbf{M}_{\nu} & -\mathbf{Q} & \mathbf{0} \\ -\mathbf{Q}^{\mathrm{T}}\partial_{t} & \mathbf{M}_{\rho} + \mathbf{M}_{\mu}\partial_{t} & \mathbf{X} \\ \mathbf{0} & \mathbf{X}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{h} \\ v_{\mathrm{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ i_{\mathrm{s}} \end{bmatrix}
$$

$$
M_{i,j}^{\nu} = \int_{\Omega} \mu^{-1} \nabla \times \vec{w_i} \cdot \nabla \times \vec{w_j} \, d\Omega, \quad \mathbf{M}_1
$$

\n
$$
Q_{i,q} = \int_{\Gamma} \vec{w_i} \cdot (\vec{z_q} \times \vec{n}) \, d\Gamma,
$$

\n
$$
M_{p,q}^{\rho} = \int_{\Omega} \rho \nabla \times \vec{z_p} \cdot \nabla \times \vec{z_q} \, d\Omega, \qquad \mathbf{M}_{\rho}
$$

\n
$$
M_{p,q}^{\mu} = \int_{\Omega} \mu_0 \vec{z_p} \cdot \vec{z_q} \, d\Omega, \qquad \mathbf{M}_{\mu}
$$

\n
$$
X_p = \int_{\Omega} \vec{\chi} \cdot \nabla \times \vec{z_p} \, d\Omega.
$$

\n**X**

$$
M_{\nu}
$$
 reuciance
Q current

$$
M_{\rho}
$$
 resistance

$$
M_{\mu}
$$
 flux
X voltage

reluctonce

Advantages M_{ρ} (ρ) → finite conditon number
 \vec{A} → magnetostatic problem \rightarrow magnetostatic problem

Drawback Weak form to be implemented

High-Temperature Superconductors

Cuprate compounds (CuO_2) doped with rare earth elements (La, Bi-Sr-Ca, Y-Ga-Ba ...)

- Higher Tc and Bc0 respect to the traditional LTS competitors
- Higher performance comes with higher prices! $\frac{1}{4}H_T \approx 1e^2 \frac{1}{4}H_T \approx$

.. But in the early 2000s it was $\approx 1e^3$

Tapes and Cables

Tapes

- ReBCO Rare Earth Barium Copper Oxide tape
- Batches of $\sim 10^2$ m and beyond
- Cost driven by production process

Features

- Multi-layer, multi material
- Aspect ratio $\sim 10^2$ (tape), $\sim 10^3$ (HTS layer)
- HTS as anisotropic, nonlinear mono-filament $J_c(\overline{B},T)$
- AC losses: eddy currents

Cables

- Roebel geometry (1912)
- "Coil-able", bended on the long edge
- Fully transposed: even current distribution
- Aligned-coil concept against AC losses

■ Copper ■ ReBCO

mm

μm

■Substrate

Source: CDS. Coiled Roebel cable (Henry Barnard, CERN).

Formulation - PEC Limit Behavior

[1] Knoepfel, Heinz E. *Magnetic fields: a comprehensive theoretical treatise for practical use*. John Wiley & Sons, 2008. UNIVERSITÄT DARMSTADT

Field multipoles without eddy currents

Staircase Scenario at 4.5 K

- "Eddy" considers the HTS tape dynamics
- "No Eddy" assumes a homogeneous current density in the tapes

Main Differences

Cable architecture:

- LTS filamentary compound
- HTS multi-layer tape

[CERNcourier.com](http://cerncourier.com/cws/article/cern/47504) www.fujikura.co.uk

Resistivity ρ: power law

 $\rho =$ E_c ${\rm J_c}$ J ${\boldsymbol{\mathrm{J}}}_{\mathbf{c}}$ n−1

- $n_{LTS} \approx 40$, $n_{HTS} \approx 20$
- \cdot J_{c,HTS} anisotropic

Formulations

Conductivity σ – based:

 \vec{A} : magnetic vector potential \mathbf{ii} -conditioned mass-conductivity matrix (∞ condition number)

Resistivity ρ – based:

- \overrightarrow{H} : magnetic field strength
	- $\rho \neq 0$ everywhere, unphysical eddy currents, computationally inefficient
- **-:** current vector potential-scalar magnetic potential cohomology basis functions for net currents in multiply connected domains

Mixed fields (from literature)

- **-:** magnetic vector potential + magnetic field strength
	- Developed for 2D rotating machinery. Current driven, no external coupling
- **-:** current vector potential + magnetic vector potential Current driven, no external coupling, suitable only for slabs

