

Field Quality Analysis in the HTS Dipole Insert-Magnet Feather M2 with the Finite Element Method

09-12 July 2019

L. Bortot^{1,2}, M. Mentink¹, C. Petrone¹, S. Schöps², J. Van Nugteren¹, A. Verweij¹

Bundesministerium für Bildung und Forschung

This work is supported by:

(*) The 'Excellence Initiative' of the German Government and by the Graduate School of Computational Engineering at TU Darmstadt; (**) The Gentner program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).

High-Temperature Superconductors

Cuprate compounds (CuO₂) doped with rare earth elements (La, Bi-Sr-Ca, Y-Ga-Ba ...)

- Higher Tc and Bc0 respect to the traditional low-temperature superconductors (LTS)
- Higher performance comes with higher prices! $_{\rm HTS} \approx 1e^2 \,_{\rm LTS}$

.. But in the early 2000s it was $\approx 1e^3$

Outline

- A. Introduction
- **B.** Motivation
- C. Formulation
- D. Verification Theoretical references
- E. Validation Measurements from Feather2
- F. Summary and Outlook

Feather2 magnet: net magnetic flux density contribution due to screening currents (first quadrant)

Introduction: Field Quality

 $\begin{array}{l} \mbox{Magnet aperture } \Omega_a \\ \mbox{2D magnetostatic field } {\ensuremath{\mathcal{P}}}^2 A_z = 0 \end{array}$

- $A_n(r)$, $B_n(r)$ live on boundary Γ_a
- skew and normal magnetic field multipoles
- Determined by measurements (rotating coil)

Distortion Factor (metrics for field quality)

$$F_{d,1}(r_0) = \frac{1}{B_1(r_0)} \sqrt{\sum_{n=2}^{k} [A_n(r_0)^2 + B_n(r_0)^2]}$$

Cross section of the beam pipe

Introduction: Field Multipoles

Normal field multipoles for the reference circumference $r_0 = 1 \text{ m}$

Introduction: Screening (Eddy) Currents

ReBCO tape in an external magnetic density \vec{B} :

- Magnetic field variation $\partial_t \vec{B}$: \rightarrow Screening currents \vec{j}_{screen}
- $\rho \rightarrow 0 \rightarrow Persistent magnetization \vec{B}_{screen}$
- Large filament size (4~12 mm), significant persistent magnetization: Field quality, especially at low field Thermal behavior, principal Joule loss contribution

Motivation

Design of future HTS magnets for accelerators

- Screening currents dynamics shall be taken into account
- Field error due to screening currents shall be corrected, <u>especially</u> at low field

A code with this purpose shall be:

- Numerically stable
- Scalable to accelerator magnets
- Validated, reliable, maintainable
- Optionally:
- Capable of field-circuit coupling
- Efficient

Our contribution

- Investigation and extension of a suitable field formulation
- Implementation in a proprietary software (*), using the Finite Element Method
- Scaling of the field formulation to an HTS magnet (Feather2)

(*) COMSOL Multiphysics® v. 5.3. <u>www.comsol.com</u>. Last access: 01/07/2019

Formulation: 1) Mixed Fields

Mixed potentials

- Domain decomposition
- \vec{A} solved in Ω_A (air, iron), where $\sigma \to 0$
- \vec{H} solved in Ω_H (conductors), where $\rho \rightarrow 0$:
- T soved everywhere

Discrete weak formulation:

Ampere-Maxwell Faraday Heat Balance Field coupling Circuit coupling

Finite material properties \rightarrow bounded condition number \rightarrow Numerical stability

Formulation: 2) Model Order Reduction

Model order reduction \rightarrow Speed-up

High aspect ratio Tapes as surfaces in \mathbb{R}^3 (lines in \mathbb{R}^2)

2D transverse field configuration

Tapes as lines in \mathbb{R}^2

Electric field balance in the superconductor

- External E_s ,Resistive E_r, Inductive E_i
- Current sharing resolved with root finding algorithm

with $E_s = -\chi_z v_s$

- χ_z as voltage distribution function
- v_s external voltage supply
 - Input, if voltage driven model
 - Lagrange multiplier, if current driven model

Roebel Cables \rightarrow Transposition \rightarrow Even current distribution in the tapes

Outline

- A. Introduction
- **B.** Motivation
- C. Formulation
- **D. Verification**

Theoretical references

- 1. Critical State (Bean) Model
- 2. Skin Effect
- 3. Field Dependency
- E. Validation
- F. Summary and Outlook

Verification – 1. Critical State (Bean) Model

Scenario: magnetic field diffusion

 $n_{\text{powerLaw}} = \infty (1e^3), J_c = J_{c0}$ $\rightarrow \rho = \{0; \rho_c\}$

Geometry: slab of infinite height, modelled as stack of tapes

Source: boundary field H_s

Reference: Analytical solution:

$$\begin{split} H_{sol}(x,t) &= x \cdot J(x,t) \\ J(x,t) &= \{0; \ \pm \ J_{c0}(sign(H))\} \end{split}$$

Verification – 1. Critical State (Bean) Model

Numerical Solution: magnetic field diffusion

Magnetic flux density and normalized current density distribution

 \rightarrow Distributions consistent with theory

Verification – 2. Skin Effect

Scenario: magnetic field diffusion

 $n_{\text{powerLaw}} = 1$, $J_c = J_{c0}$ $\rightarrow \rho = \text{const}$

Geometry: bulk material, modelled as stack of tapes

Source: boundary field H_s

Reference: Analytical solution:

 $H_{sol} = H_s (1 - f_{erf}(\xi))$

$$\begin{split} f_{erf}(\xi) & \text{Gaussian error function} \\ \xi &= \frac{x}{2\sqrt{k(t-t^*)}} & \text{Similarity variable} \\ k &= \rho \mu_0^{-1} & \text{Magnetic diffusivity} \end{split}$$

Numerical Solution: magnetic field diffusion

Magnetic flux density distribution in the conductive slab Magnetic flux density distribution at x=1 mm, as function of time: numerical solution (sol) and analytical solution (ref)

 \rightarrow Consistent with theory [6]

Verification – 3. Field Dependency

Verification – 3. Field Dependency

Numerical Solution: AC loss due to screening currents

AC loss / Cycle

Ac loss per cycle, as function

of the applied field

Ac loss per cycle, as function of frequency, for $H < H_p$

AC loss / Cycle

 \rightarrow Consistent with theory

Outline

- A. Introduction
- **B.** Motivation
- C. Formulation
- **D. Verification**

E. Validation

Crosscheck and Benchmark

Measurements on Feather2: Field quality assessment

- 4. Magnetic Field Quality
- 5. Screening Current Effects
- F. Summary and Outlook

Crosscheck

Reference model based on the \vec{H} formulation, available at <u>http://www.htsmodelling.com</u>

2D model of a Single HTS tape in self-field Source: $I_s = I_0 sin(2\pi ft), I_0 = 2I_{crit} t \in [0; 1]$

Benchmark

Forecasts on expected computational time:

Same physics...

		Computational time
1 tape	1.E+02	
5 tapes	1.E+01	8 h
	s 1.E+00	
10 tapes	بة 1.E-01	
	1.E-02	→ H → A-H
	1.E-03	
Increased computational cost	1	10 100 1000 10000 tapes (-)

CPU: Intel Core i7-3770 @ 3.40GHz. RAM: 32 Gb. OS: Win 10

Feather2 Dipole Insert Magnet

Courtesy of J. Van Nugteren

Measurements on Feather2

Scenario: magnetic field quality in the Feather M2 insert dipole magnet

n = 20, $J_c(T, B, \theta)$

 $\rightarrow \rho$ as anisotropic power law, derived from data @ 77 K Uncertainty in material properties

Geometry: tapes modelled as lines

Source: measured current

Reference: measurements carried out by *C. Petrone* (CERN)

Computational domain

Modelling of Jc (T, B, θ)

- J_c available only for $T = 77 \text{ K} \rightarrow \text{Need}$ for a lift factor
- Calibrated with the measured critical current I_c
- Gauged with $\theta = 30^{\circ}$ (magnetostatic simulation)

\rightarrow Anisotropy included in the model, but uncertainty on material properties

Field Quality Assessment

 $\begin{array}{l} \mbox{Pre-cycle} \rightarrow \mbox{first magnetization} \\ \mbox{Steps of 250 A, plateaus of 120 s:} \\ \mbox{decay of inductive effects} \\ \mbox{Evaluation points } \{p_{i,up}, \, p_{i,dn}\} \end{array}$

- 1. FEM simulation
- 2. Magnetic field quality calculation
- 3. Persistent screening currents contribution:

Calculation of change in magnetic field quality (assuming screening currents as dominant mechanism)

Results – FEM Simulation

Normalized current density in the coil, shown for the first quadrant

DARMSTADT

Validation – 4. Magnetic Field Quality

 \rightarrow Very good agreement with measurements

Validation – 5. Screening Currents

 Δb_i field multipole variations, as function of current (in kA)

Measurement
 Simulation

 \rightarrow Good agreement with measurements, considering uncertainty in J_c(T, B, θ)

Summary and Outlook

Summary

- \vec{A} - \vec{H} weak formulation for FEM:
- 1. Excellent agreement with theory

W/m²

10

9

- 2. Consistency with Feather2 measurements
- 3. Stable, scalable and fast (few hours for $\sim 10^4$ tapes in 2D models)

Outlook

- 1. Include heat balance equation
- 2. Develop field-circuit coupling interface
- 3. Include the models in the STEAM co-simulation framework
- Run field quality analysis and optimization
- Run quench protection studies (e.g., Feather2 in FRESCA2)

Thank you for your attention!

References

- 1. Bíró, O. "Edge element formulations of eddy current problems." *CMAM* 169.3-4 (1999): 391-405.
- 2. Carpenter, C. J. "Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies." *Proceedings of the Institution of Electrical Engineers*. Vol. 124. No. 11. IET Digital Library, 1977.
- 3. Brambilla, R., Grilli, F., Martini, L., Bocchi, M., & Angeli, G. (2018). A finite-element method framework for modeling rotating machines with superconducting windings. *IEEE Transactions on Applied Superconductivity*, *28*(5), 1-11.
- 4. Zhang, H., et al. "An efficient 3D finite element method model based on the T–A formulation for superconducting coated conductors." *SuST*, 30.2 (2016): 024005
- 5. Schöps, S., et al. "Winding functions in transient magnetoquasistatic field-circuit coupled simulations." *COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering* 32.6 (2013): 2063-2083
- 6. Russenschuck, S. Field computation for accelerator magnets: analytical and numerical methods for electromagnetic design and optimization. John Wiley & Sons, 2011.
- 7. Knoepfel, H. E., Magnetic fields: a comprehensive theoretical treatise for practical use. John Wiley & Sons, 2008
- 8. Brandt, E H., "Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs." *Physical review B* 54.6 (1996): 4246
- 9. Van Nugteren, J., et al. "Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K." *SuST* 31.6 (2018): 065002.

...Why HTS?

Circular accelerators for particle physics: circular orbit $F_{Lorentz} = -F_{centripetal}$

$$q(\mathbf{v} \times \mathbf{B}) = -\frac{mv^2}{\mathbf{r}}(N) \quad \rightarrow \mathbf{r} = \frac{mv^2}{qvB} (T)$$
$$r_{[km]} \approx 3 \frac{p_{[TeV/c]}}{B_{[T]}}$$

Just for fun

LHC tunnel + HTS dipoles everywhere @ 4.2 K, 30 T:

$$p \approx \frac{1}{3} \cdot \frac{27}{2\pi} \cdot 30 \approx 40 \text{ [TeV/c]}$$

Collision energy of the Future Circular Collider (FCC): p = 50 [TeV/c] ... not so far away after all!

Verification – Current dependency

 Ω_0 : air

 Ω_c : conductor

FTELAN Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents." IEEE perconductivity 24.1 (2014): 78-110.

Verification – Current dependency

Solution of the transport + screening currents problem

Ac loss per cycle, as function of the applied current. Trends are highlighted with dashed lines

Ac loss per cycle, as function of frequency, for $I < I_c$. Trends are highlighted with dashed lines

 \rightarrow Consistent with previous research

Magnetic field dynamics in superconductors

Type I: Meißner Effect

- Thermodynamical state, reversible
- London equation

 $\Delta \overrightarrow{B} - \lambda^{-2} \overrightarrow{B} = 0, \ \ {\rm if} \ B < B_{c1}$

Type II: Abrikosov fluxons

- Flux pinning and motion, irreversible
- Power-law (phenomenological)

$$\rho(\vec{B}, T) = \frac{E_c}{J_c(\vec{B}, T)} \left(\frac{J}{J_c(\vec{B}, T)}\right)^{n-1}$$

• Faraday Law (eddy currents)

$$\Delta \vec{H} - \mu \rho^{-1} \partial_t \vec{H} = 0$$

Formulation - Mixed potentials

$\vec{A} - \vec{H}$ formulation, weak form:

- 1. $\Omega_0 \rightarrow \text{Ampere-Maxwell Law}$
- 2. $\Omega_c \rightarrow$ Faraday Law
- 3. $\Omega_c \rightarrow Constraint on transport current$

1.
$$\begin{bmatrix} \mathbf{M}_{\nu} & -\mathbf{Q} & \mathbf{0} \\ -\mathbf{Q}^{\mathrm{T}}\partial_{t} & \mathbf{M}_{\rho} + \mathbf{M}_{\mu}\partial_{t} & \mathbf{X} \\ \mathbf{0} & \mathbf{X}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{h} \\ v_{\mathrm{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ i_{\mathrm{s}} \end{bmatrix}$$

$$\begin{split} M_{i,j}^{\nu} &= \int_{\Omega} \mu^{-1} \nabla \times \vec{w}_i \cdot \nabla \times \vec{w}_j \ d\Omega, \quad \mathbf{M}_{\nu} \\ Q_{i,q} &= \int_{\Gamma} \vec{w}_i \cdot (\vec{z}_q \times \vec{n}) \ d\Gamma, \qquad \mathbf{Q} \\ M_{p,q}^{\rho} &= \int_{\Omega} \rho \nabla \times \vec{z}_p \cdot \nabla \times \vec{z}_q \ d\Omega, \qquad \mathbf{M}_{\rho} \\ M_{p,q}^{\mu} &= \int_{\Omega} \mu_0 \vec{z}_p \cdot \vec{z}_q \ d\Omega, \qquad \mathbf{M}_{\mu} \\ X_p &= \int_{\Omega} \vec{\chi} \cdot \nabla \times \vec{z}_p \ d\Omega. \qquad \mathbf{X} \end{split}$$

$$\mathbf{M}_{\nu}$$
 refluctance
 \mathbf{Q} current
 \mathbf{M}_{ρ} resistance
 \mathbf{M}_{μ} flux
 \mathbf{X} voltage

roluctopoo

 $\begin{array}{ll} \mbox{Advantages} \\ \mbox{M}_{\rho}(\rho) \rightarrow \mbox{ finite conditon number} \\ \mbox{\vec{A}} & \rightarrow \mbox{ magnetostatic problem} \end{array}$

Drawback Weak form to be implemented

High-Temperature Superconductors

Cuprate compounds (CuO₂) doped with rare earth elements (La, Bi-Sr-Ca, Y-Ga-Ba ...)

- Higher Tc and Bc0 respect to the traditional LTS competitors
- Higher performance comes with higher prices! $_{\rm HTS} \approx 1e^2$

.. But in the early 2000s it was $\approx 1e^3$

Tapes and Cables

Tapes

- ReBCO Rare Earth Barium Copper Oxide tape
- Batches of $\sim 10^2 \text{ m}$ and beyond
- Cost driven by production process

Features

- Multi-layer, multi material
- Aspect ratio $\sim 10^2$ (tape), $\sim 10^3$ (HTS layer)
- HTS as anisotropic, nonlinear mono-filament $J_c(\vec{B}, T)$
- AC losses: eddy currents

Cables

- Roebel geometry (1912)
- "Coil-able", bended on the long edge
- Fully transposed: even current distribution
- Aligned-coil concept against AC losses

Source: CDS. Coiled Roebel cable (Henry Barnard, CERN).

Formulation - PEC Limit Behavior

Knoeptel, Heing Frederic fields: a comprehensive theoretical treatise for practical use. John Wiley & Sons, 2008. UNIVERSITAT DARMSTADT

Field multipoles without eddy currents

Staircase Scenario at 4.5 K

- "Eddy" considers the HTS tape dynamics
- "No Eddy" assumes a homogeneous current density in the tapes

Main Differences

Cable architecture:

- LTS filamentary compound •
- HTS multi-layer tape •

CERNcourier.com

www.fujikura.co.uk

B

Resistivity ρ : power law

 $\rho = \frac{E_c}{J_c} \left(\frac{J}{J_c} \right)^{n-1}$

- $n_{LTS} \approx 40, n_{HTS} \approx 20$
- J_{c,HTS} anisotropic •

Formulations

Conductivity σ – based:

 A: magnetic vector potential ill-conditioned mass-conductivity matrix (∞ condition number)

Resistivity ρ – based:

- **H**: magnetic field strength
 - $\rho \neq 0$ everywhere, unphysical eddy currents, computationally inefficient
- T-Ω: current vector potential-scalar magnetic potential cohomology basis functions for net currents in multiply connected domains

Mixed fields (from literature)

- A-H: magnetic vector potential + magnetic field strength
 Developed for 2D rotating machinery. Current driven, no external coupling
- \vec{T} - \vec{A} : current vector potential + magnetic vector potential Current driven, no external coupling, suitable only for slabs

