

User Defined Elements in ANSYS for Multiphysics Modeling of Superconducting Devices

July 10th 2019 CHATS-AS, Szczecin, Poland

Lucas Brouwer
US Magnet Development Program
Lawrence Berkeley National Laboratory

Outline

A multiphysics approach in ANSYS for multi-filamentary conductor magnets

- adding equivalent magnetization, quench, and material property fits at the point of element matrix generation (user compiled ANSYS)
- coupling across electromagnetic, thermal, and circuit domains
- Ex. 1: simulating IFCC induced quench back in Nb₃Sn undulators
- Ex. 2: simulating CLIQ for a Nb₃Sn dipole (validation with STEAM/COMSOL)

Implementing the E-J power law in ANSYS (initial verification studies)

- field trapping in bulk cylinder (axisymmetric)
- round filament magnetization (plane)

Our initial effort to share these elements with the community

We have two approaches in ANSYS based on uniform (stranded) or computed current density (power law)

A-curr-emf (stranded)

- quench and current sharing is implemented with loss term based on Jc(T,B)
- equivalent magnetization used for coupling currents (a priori current path)
- optional resistive/inductive coupling to external circuit
- use for conductor regions of NbTi, Nb₃Sn magnet models

A-V formulation with E-J power law

- conductive paths resolved by mesh
- current distribution follows from DOF solution
- use for bulk devices, filament magnetization, etc.

User Defined Elements can Extend the Capability of ANSYS to Include Superconducting Specific Behavior

Keep all features of standard ANSYS...

- o modeler, mesher, post-processor
- transient electromagnetic and thermal solvers
- eddy currents in structure
- external circuit coupling
- yoke saturation

New 2D elements created by

- writing code which generates FEM matrices
- compiling a custom version of ANSYS

... and add what is missing with user elements

- equivalent magnetization for interfilament coupling currents
- current sharing + quench loss
- coupling to thermal model with full (T,B) mat. prop.

Material Property Fits are Internally Programmed for Simulations with Nb-Ti, Nb₃Sn, and Bi2212

User chooses materials and fits using element key options and real const.

```
! thermal for conductor region only
et,12,user101
keyopt, 12, 1, 0
                  ! 0=internal fits, 1=ANSYS table
keyopt, 12, 2, 1
                 ! 0=no transfer to mag, 1=trans
keyopt, 12, 3, 1
                 ! 0=NbTi, 1=Nb3Sn, 2 = Bi2212
keyopt, 12, 4, 0
                 ! 0=Cu, 1=Ag
keyopt, 12, 5, 0
                ! 0=G10
keyopt, 12, 6, 1
                ! 0=NIST Cucv, 1=CUDI, 2=MATPRO
                 ! 0=NIST Cukxx, 1=CUDI, 2=MATPR
keyopt, 12, 7, 0
keyopt, 12, 8, 0
                 ! TBD (NbTi Cv)
                 ! 0=NIST, 1=CUDI, (Nb3Sn Cv)
keyopt, 12, 9, 0
keyopt, 12, 10, 0
                ! TBD (Bi2212 Cv)
keyopt, 12, 11, 0
                 ! 0=NIST (G10 Cv)
keyopt, 12, 12, 0
                  ! Agcv
keyopt, 12, 13, 0
                  ! Aakxx
fcond = nturns*nstrand*ds*ds*pi/(4*across) !cond
fsc=0.24 ! S.C. fraction
           ! Ag/Mg mech. stab fraction
fst=0.25
Lp = 20.0e-3 ! filament twist pitch
feff = 1.0 ! rho eff scaling
RRR = 187.5 ! Ag matrix RRR (from 273)
R, 21, across, nturns, fcond, fsc, curdir, Lc
Rmore, Li, RRR, Lp, feff, 0, TauMult
Rmore, 0, 0, 0, 0, 0, scIFCU
Rmore, fst, Mmult,
```

Example format: NIST rhocu(T, RRR, B)*

```
function rhocunist(tt,rrr,bb)
! rhocu returns the resistivity of copper in the SI
! for a given temperature, RRR and magnetic field.
! Units are ohm*m
      DOUBLE PRECISION tt, rrr, bb, b, rhocunist
      DOUBLE PRECISION rhoo, rhoi, rhoiref, rhcu, lqs, poly, corr
      b=abs (bb)
      rho0=1.553D-8/rrr
      rhoi=1.171D-17*(tt**4.49)/(1+4.48D-7*(tt**3.35)*exp(-(50/tt)**6.428))
      rhoiref=0.4531*rho0*rhoi/(rho0+rhoi)
      rhcu=rho0+rhoi+rhoiref
      if (b.lt.1D-1) then
         rhocunist=rhcu
         lgs=0.43429*log(1.553D-8*b/rhcu)
         poly=-2.662+lgs*(0.3168+lgs*(0.6229+lgs*(-0.1839+lgs*0.01827)))
         corr=(10**poly)
         rhocunist=(1.+corr)*rhcu
      endif
      end function rhocunist
```

Heat capacity, resistivity, thermal conductivity, critical current, etc.

Interfilament coupling currents (IFCC) can be modeled using an equivalent magnetization formulation

Instead of modeling currents themselves (A-V), assume the induced current path is known and use an equivalent magnetization

For a transverse field (2D magnet) this leads to (from Wilson, etc.)

$$M_e = -\frac{2\tau}{\mu_0} \dot{B}_i.$$

$$\tau = \frac{\mu_0}{2\rho_{et}} \left(\frac{L}{2\pi}\right)^2$$

Heat deposition (which can drive coil to quench)

$$P_e = \vec{M_e} \cdot \frac{\partial \vec{B}}{\partial t}$$

mechanism for CLIQ*

The simplest example: magnetization of a single strand in a changing background field

B.C. on edges of air used to apply constant ramp of background field, set IFCC time constant as constant 1.5 ms

strand meshed with user elements

Magnetic field inside the strand

Heating inside the strand

A fully coupled magnet simulation uses independently meshed electromagnetic and thermal domains, each with their own user element

Electromagnetic Field

EM Meshed Areas

iron, insulation, structure, air

mat. prop. (temp)

conductor

quench

default element (PLANE53)

eddy currents in structure

user defined EM element

mat. prop. (temp, B)

interfilament coupling loss

temperature joule heating temperature joule heating B, quench state

Thermal Field

TH Meshed Areas

iron, insulation, structure

- default element (PLANE77)
- mat. prop. (temp)

conductor

- user defined TH element
- mat. prop. (temp, B, quench state)

coupled with stranded formulation

Circuit

QPS: dump resistor, CLIQ, etc

• default elem. (CIRCU124)

Inductive and voltage coupling with quench resistance included (two additional DOF)

$$\left[C^{AA}\right]\frac{\partial}{\partial t}\left\{A\right\} + \left[K^{AA}\right]\left\{A\right\} + \left[K^{Ai}\right]\left\{i(t)\right\} = \left\{0\right\}$$

$$\left[C^{eA}\right]\frac{\partial}{\partial t}\left\{A\right\}+\left[K^{ee}\right]\left\{e(t)\right\}+\left[K^{ei}\right]\left\{i(t)\right\}=\left\{0\right\}$$

Iterative coupling across domains is achieved using the multi-field solver

Total time is broken up into "stagger" loops which iterate until loads converge

Example 1: Superconducting Nb₃Sn Undulators for Free Electron Lasers

Interaction of electron beam with alternating fields produces light in a FEL

4-5 T field on the conductor field

Example of a fully coupled quench back simulation of a Nb₃Sn undulator in a dump resistor circuit

Extreme current densities require advanced quench protection + modeling (Nb₃Sn at low field)

- 5100 A/mm² in Cu post quench -> energy has to be extracted quickly to avoid burning
- · accurate prediction of peak temperatures and current decay are critical

Quench Protection with a Dump Resistor Requires Balancing Hotspot Temperature and Peak Voltage

Choose the smallest dump resistor possible to keep hotspot temp reasonable (this limits voltage) => to do this it is critical to accurately simulate the current decay profile including quench back

Adiabatic hotspot temp is proportional to quench integral

The user elements replicate quench back for a short undulator prototype tested at Berkeley

~ 34% less quench integral at high current allows us to reduce dump resistor (terminal voltage)

Long benchmarking and verification study complete with CERN/STEAM: B. Auchmann, L. Bortot, E. Stubberud

Includes CLIQ comparison for a Nb₃Sn block dipole

Crosscheck of the ANSYS-COMSOL 2D FEM Implementations for Superconducting Accelerator Magnets

Contents

4
5
5
6
7
7
g
11
14
17
20
23
28
40
41
44
49
53
58
Je
65
65
66
67
68
70
73
78
86
0.0
88
89
91
100
100 101

Comparison of coil and CLIQ currents to COMSOL (w/CERN) shows agreement

Comparison of coil resistance and hotspot temperature for CLIQ simulation to COMSOL (w/CERN) shows agreement

We have two approaches in ANSYS based on uniform (stranded) or computed current density (power law)

A-curr-emf (stranded)

- quench and current sharing is implemented with loss term based on Jc(T,B)
- equivalent magnetization used for coupling currents (a priori current path)
- optional resistive/inductive coupling to external circuit

- conductive paths resolved by mesh
- current distribution follows from DOF solution

Verification #1: HTS modeling benchmark for bulk magnetization

Benchmark #4

[Go to available solutions]

A superconducting bulk cylinder subjected to magnetization. With the use of an axis-symmetric model the geometry can be reduced to 2-D Cylinder's radius: R=12.5 mm Cylinder's height: L=10 mm Jc=3·10^A8 A/m^A2, [t1,t2,t3]=[5,10,15] s, magnetic field ramp: as displayed at the bottom of the figure below (Bmax=1 T)

Compare J distributions and magnetization at t1, t2, t3; Bz profiles 2 mm above surface, dissipation

Bulk cylinder of constant Jc is magnetized using vertical field profile as a function of time

$$E = -\partial t A_z - \nabla V$$

$$\rho(E) = \rho_0 + \frac{E_c^{1/n}}{J_c} E^{(n-1)/n}$$

Current Density at Profile End

Comsol Benchmark

Trapped field at profile end is converging towards benchmark

Verification #2: magnetization of a round filament of fixed Jc = 3x10^8

^{*}model is slightly different than analytic based on how fields are applied

It is our goal to make these element available to those interested within the community

FEM approach is geometry and material independent

- accelerator magnets, solenoids, persistent switches, quench heaters, etc...
- Nb-Ti, Nb₃Sn, Bi2212 (or mixed/hybrid)
- very little additional knowledge beyond ANSYS needed

We have a first package with examples and documentation to share with the community (see http://usmdp.lbl.gov/scpack-code/ or contact me at Inbrouwer@lbl.gov)

Initial publication: https://doi.org/10.1088/1361-6668/ab2e63

Summary

A multiphysics approach in ANSYS for multi-filamentary conductor magnets

- adding equivalent magnetization, quench, and material property fits at the point of element matrix generation (user compiled ANSYS)
- coupling across electromagnetic, thermal, and circuit domains
- Ex. 1: simulating IFCC induced quench back in Nb₃Sn undulators
- Ex. 2: simulating CLIQ for a Nb₃Sn dipole (validation with STEAM/COMSOL)

<u>Implementing the E-J power law in ANSYS (initial verification studies)</u>

- field trapping in bulk cylinder (axisymmetric)
- round filament magnetization (plane)

Our initial effort to share these elements with the community