Session IV : Thermo-hydraulics and Cryogenics (1/6)

- 3 presentation about the modeling of thermo-hydraulics of large machine in Fusion domain, JT60, ITER and DEMO
- 1 presentation about the modeling of the dynamic and thermal behavior of tube pulsating heat pipe
- Adaptation of the nuclear safety code CATHARE3 to supercritical helium flow. Sulayman Shoala
- Simulation of a cryogenic capillary tube: thermodynamic behavior subjected to heat load Maria Barba
- An update of dynamic thermal-hydraulic simulations of the JT-60SA Cryogenic system for preparing plasma operation

François Bonne

 Parametric study and optimization of the cryo-magnetic system for EU DEMO at the pre-conceptual design phase

Christine Hoa

Session IV : Thermo-hydraulics and Cryogenics (2/6)

- First presentation, given by Sulayman Shoala, concerned the adaptation of the nuclear safety code CATHARE3 to the problematic of thermo-hydraulics of the supercritical helium flow in CICC fusion machine
- The conclusion is that the CATHARE3 code is suited for these computations and comparison with THEA is really encouraging
- The CATHARE3 code has been used also to model cryogenic safety relieved valve. CATHARE3 shows that it can reproduce the experimental results given by the SOUPAPE experiment in Grenoble

Session IV : Thermo-hydraulics and Cryogenics (3/6)

- The second presentation, given by Maria Barba, concerns the modeling of the dynamics and thermal behavior on a single capillary tube as part of an oscillating heat pipe with 2D Axis Fluent
- The code is still in a early stage development but it can reproduce the physics of the liquid film and droplets formation due to the Laplace instabilities and the shape on the vapor plugs
- More developments are necessary to implement additional dissipations to ensure periodic oscillations and move towards the modeling of the working conditions of an oscillation heat pipe

Session IV : Thermo-hydraulics and Cryogenics (4/6)

- Later on François Bonne presented an update of the modle based on SIMcryogenics for the simulation of the thermal-hydraulic JT-60SA cryogenics for its future operation
- Model was enriched with new data and some improvement on the distribution of heat load and inter-turn thermal coupling.
- The computations were compared to a Vicenta model
- A smoother profile for the heat load deposition on the thermal buffer was reached mainly due to the different friction factors (new data) for a mass flow rate of 3 g/s

Session IV : Thermo-hydraulics and Cryogenics (5/6)

- The last presentation by Christine Hoad proposed a parametric study and optimization of the cooling capacity of the cryomagnetic system for DEMO where in this conceptual phase the cryogenics and magnet design are done at the same time
- Different Nb3Sn coil designs (CEA and ENEA) were studied and a benchmark is proposed with SIMcryogenics, THEA and CASTEM and a 1D analytical model
- The study shows that this parametric study is able to modify the design of the coils to improve the cryo system and save refrigeration power

Session IV : Thermo-hydraulics and Cryogenics (6/6)

- The essential keyword of this session is : comparison
- One can see the strong need for comparison with experimental results or benchmarks among different codes as these studies involved multi-physics modeling and measurements
- Concerning our materials data base, please see one proposal from the FUSUMATECH initiative (<u>http://fusumatech.web.cern.ch/</u>)