

The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

Towards to Quench Limit Determination of Superconducting Magnet with use of Thermal-Electrical Analogy

Dariusz Bocian

CHATS on Applied Superconductivity 2019

Szczecin, 9th July, 2019

- Introduction
 - Motivation
- Thermal-electrical analogy
 - Magnet model
- Implementation
 - Comparison with measurements
 - Comparison with ANSYS model
- Outlook

Accelerator operation scheme

4

Numbers: Introduction

- Particles from proton-proton collision debris
- Interaction of lost protons with collimators
- Physics processes BFPP (ion beam case)
- Accidental beam losses
- Transient losses ~ns to ~ms
 - Enthalpy of the cable (metal only) (~ns)
 - \bullet Heat transfer to helium volume inside the cable (~µs)
 - Enthalpy of the cable (metal + He) (~ms)

Steady-state losses

•Transfer of the heat from cable to the heat reservoir (~s)

•Magnet structure and geometry of cooling channels

GOAL:

⇒ NUMBERS for accelerator protection system (BLM's, etc)

11.07.2019

Superconducting magnets characteristics

• Three parameters characterizing superconductor:

Critical surface

- Critical current density
- Critical magnetic field
- Critical temperature

operating point of the magnet beyond critical surface \Rightarrow **QUENCH**

Accelerators: conductor temperature rise due to beam induced heat load ⇒ QUENCH

11.07.2019

Heat load in the LHC magnets

A heat transfer in the magnet

References:

- D. Bocian, CERN AT-MTM note, EDMS 750204
- D. Bocian et al., IEEE Trans. on Appl. Supercond., 18, (2008) 112 115;
- P.P. Granieri, (D. Bocian), et al., IEEE Trans. on Appl. Supercond.,18, (2008) 1257 1262;
- D. Bocian et al., IEEE Trans. on Appl. Supercond., 19, (2009) 2446–2449;
- R. Bruce, (D. Bocian), et al., Phys. Rev. ST Accel. Beams 12, (2009) 071002;

11.07.2019

46

Motivation

- Energy deposits in the accelerator magnets
- e Heat load calculations for LHC IR magnets show:
 - → Current LHC: 10W/m
 - \rightarrow LHC upgrade: 50W/m
- Thermal study objectives:
 - → Optimise Beam Loss Monitors threshold settings (gain the time and money)
 - → Integrated luminosity (increase discovery potential of LHC)
 - → Reduce of quench number (reduce the number of thermodynamic shocks)
 - → Optimise magnet cooling scheme in future accelerator magnets
 - LARP Nb₃Sn quadrupole design
 - \rightarrow impregnated coil \rightarrow no helium link between the bath and the cable
 - New CERN N-Ti quadrupole design
 - \rightarrow enhanced insulation scheme \rightarrow open helium paths between the bath and the cable

11.07.2019

Thermal Model: coil cross section

11.07.2019

Thermal model: construction

Thermal Model: cable modeling

11.07.2019

Model parameters: Helium

11.07.2019

Model parameters: Kapitza resistance

Kapitza resistance: A resistance to the flow of heat across the interface between liquid helium and a solid.

$$R_{K} = \frac{\frac{T_{s} - T_{He}}{\dot{Q}/A}$$

T_c – solid temperature

 \dot{Q}_{A} – heat flow per unit area

Copper - HeII	
$R_{K} = 1/\sigma \cdot (T_{s}^{2} + T_{f}^{2}) \cdot (T_{s} + T_{f}) [Km^{2}W^{-1}]$	[4-6]
POLYIMIDE - HeII	
Theorerical: R _K ~T ^{-2.57} Km ² W ⁻¹ ,α=65.51 Wn	n ⁻² K ^{-3.57}
R_{K} =10.54E-3T ⁻³ Km ² W ⁻¹ , α =47.43 Wm ⁻² K ⁻⁴ R_{K} =0.7E-3*T ³ Km ² W ⁻¹	[1] [2]
G10 - HeII	
R _K =1462E-6T ^{-1.86} Km ² W ⁻¹ ,h _K =239 Wm ⁻² K ⁻²	^{2.86} [3]
 Bibliography: B. Baudouy, <i>"Kapitza resistance and therma Kapton in superfluid helium</i>", Cryogenics 43 Nacher PJ et al., "Heat exchange in liquid he plastic foils", Cryogenics 32 (1992), B. Baudouy, J. Polinski, <i>"Thermal conductiv resistance of epoxy resin fiberglass tape at stemperature</i>", Cryogenics 49(2009), A. Kashani and S.w.Van Sciver, <i>"High heat conductance of technical copper with severa surface proparations</i>", Cryogenics 25 (1995) 	al conductivity of (2003) , elium through thin ity and Kapitza superfluid helium flux Kapitza al different
 Surrace preparations⁻, Cryogenics 25 (1985) P.P. Granieri et al, <i>"Stability analysis of the transient heat depositions</i>", IEEE Trans. App 	, <i>LHC cables for</i> ol. Supercond.,

6. D. Camacho et al., "Thermal characterization of the HeII LHC heat exchanger tube", LHC Project Report 232, 1998.

vol. 18, No. 2 (2008).

11.07.2019

Model parameters: material properties

- Material properties at low temperatures
 - \rightarrow Coil insulation (Polyimide, G10)

 \rightarrow experimental data available

Material data implemented in Network Model

Polyimide & G10

Bibliography:

- 1. B. Baudouy, *"Kapitza resistance and thermal conductivity of Kapton in superfluid helium*", Cryogenics 43(2003), 667-672,
- Lawrence et al., "The thermal conductivity of Kapton HN between 0.5 and 5 K", Cryogenics 40 (2000), 203-207,
- 3. B. Baudouy, J. Polinski, *"Thermal conductivity and Kapitza resistance of epoxy resin fiberglass tape at superfluid helium temperature"*, Cryogenics 49(2009), 138-143

11.07.2019

4

Magnet thermal model

11.07.2019

Thermal – electrical analogy

Kirchhoff stated as early as 1845 that:

" Two different forms of energy behave identically when the basic differential equations which describe them have the same form and the initial and boundary conditions are identical".

	The	mal circuit	Electrical Circuit			
Т	[K]	Temperature	V	[V]	Voltage	
Q	[J]	Heat	Q	[C]	Charge	
q	[W]	Heat transfer rate	i	[A]	Current	
к	[W/Km]	Thermal Conductivity	σ	[1/Ωm]	Electrical Conductivity	
R	[K/W]	Thermal Resistance	R	[V/A]	Resistance	
C	[J/K]	Thermal Capacitance	С	[C/V]	Capacitance	

The analogy of the equivalent thermal circuit

The analogy between electrical and thermal circuit can be expressed as:

-steady-state condition

$$\Delta T = qR^{\Theta} \qquad \Leftrightarrow \qquad Voltage difference$$

$$\Delta V = iR$$
-transient condition

$$Heat \ diffusion \qquad \Leftrightarrow \qquad RC \ transmission \ line$$

$$\nabla^2 T = R^{\Theta} C^{\Theta} \frac{\partial T}{\partial t} \qquad \Leftrightarrow \qquad \nabla^2 V = RC \frac{\partial V}{\partial t}$$

4

Quench limit simulations

LHC Project Note 44

- 1 cold bore factor = 50
- 2 inner layer factor = 6
- 3 outer layer factor = 1

Concentric beam loss profile

Temperature margin distriution, ΔT

Quench limit at 11850A 12 mW/cm³

Quench limit at 12840A 10 mW/cm3

11.07.2019

Quench limit simulations

FLUKA simulations

- 1 factor = 1
- 2 factor = 1.0/3.0
- 3 factor = 0.4/3.0
- 4 factor = 0.1/3.0
- 5 factor = 0.03/3.0

Gaussian beam loss profile

Temperature margin distriution, ΔT

Quench temperature map $\Delta T - \Delta T_{simulation}$

Temperature in the coil, $\Delta T_{simulation}$

11.07.2019

Quench limit simulations

- Beam loss profile with homogenous heat deposition
- no heat load to the cold bore
 - 10500 A \rightarrow Quench Limit ~ 150 mW/cm³
 - 11850 A \rightarrow Quench Limit ~ 100 mW/cm³
 - 12100 A \rightarrow Quench Limit ~ 72 mW/cm³
- with heat load to the cold bore
 - 10500 A \rightarrow Quench Limit ~ 20 mW/cm³
 - 11850 A \rightarrow Quench Limit ~ 14 mW/cm³
 - 12840 A \rightarrow Quench Limit ~ 9 mW/cm³

This is effect of Helium channel blocking, which is between cold bore and coil

<u>Very important information for future design of accelerator superconducting magnets:</u>

A better cooling of the cold bore is needed to increase quench level

NM and COMSOL comparison

11.07.2019

- Two methods of measurement
 - $~I_{coil}$ =const, increase of I_{QH} with a step of 0.1 A
 - I_{QH} =const, wait 300 second for steady state, then ramp of I_{coil}
- Second method is better for steady state heat transport
- 3 MQM, 2 MQY, MQ and MB have been tested at 4.5 K

46

Network Model - Validation

The relative difference between measured and calculated quench values are ranging from 0.6 to 15 % for all measured types of superconducting magnets at 4.5 K.

11.07.2019

Main Dipole - MB

MQM

Main Quadrupole - MQ

MQY

What next?

11.07.2019

Enhanced cable insulation Can we still exploit NbTi?

	Strand diameter = 1.065 mm, cable width (bare)= 15.1 mm					
El type	1st layer (polyimide)	2nd layer (polyimide)	3rd layer (polyimide with adhesive coating)			
EI #1	9 mm wide,1 mm gap 25.4 μm thick wrap angle α ₁ =71.68 deg	4 x(2.5 mm wide, 1.5 mm gap) 75 μ m thick, <u>cross wrapped with</u> <u>1st and 3rd layers</u> wrap angle α_1 =62.16 deg	9 mm wide, 1 mm gap 55 μm thick, <u>50% overlap with 1st layer</u> wrap angle α ₁ =71.90 deg			
EI #4	9 mm wide, 1 mm gap 50μm thick wrap angle α ₁ =71.68 deg	1 x(3.0 mm wide, 1.5 mm gap) $75 \mu m thick,$ <u>cross wrapped with</u> <u>1st and 3rd layers</u> wrap angle α_1 =81.6 deg	9 mm wide, 1 mm gap 69 μm thick, <u>50% overlap with 1st layer</u> wrap angle α ₁ =72.0 deg			
	EI #1	Strand dEl1st layer (polyimide)P9 mm wide,1 mm gap 25.4 μm thick wrap angle α1 =71.68 degP9 mm wide,1 mm gap 25.4 μm thick wrap angle α1 =71.68 degEl #49 mm wide, 1 mm gap 50μm thick wrap angle α1 =71.68 deg	ElIst layer (polyimide)Ist layer (polyimide)El1st layer (polyimide)2nd layer (polyimide) $I = 1$ 9 mm wide,1 mm gap 25.4 µm thick wrap angle $\alpha_1 = 71.68$ deg4 x(2.5 mm wide, 1.5 mm gap) 75 µm thick, cross wrapped with 1^{st} and 3^{rd} layers wrap angle $\alpha_1 = 62.16$ degEl #49 mm wide, 1 mm gap 50µm thick wrap angle $\alpha_1 = 71.68$ deg1 x(3.0 mm wide, 1.5 mm gap) 75 µm thick, cross wrapped with 1^{st} and 3^{rd} layers wrap angle $\alpha_1 = 81.6$ deg			

Bibliography:

- 1. M. La China, D. Tommasini, "Cable insulation scheme to improve heat transfer to superfluid helium in Nb-Ti accelerator magnets", IEEE Trans.Appl.Supercond., Vol. 18, 2, (2008).
- 2. D. Tommasini, D. Richter, "A new cable insulation scheme improving heat transfer to superfluid helium in Nb-Ti superconducting accelerator magnets", proceedings of *EPAC08*, pp2467-2469, (2008).
- 3. P. P. Granieri, P. Fessia, D. Richter, D. Tommasini, "Heat transfer in an enhanced cable insulation scheme for the superconducting magnets of the LHC luminosity upgrade", IEEE Trans.Appl.Supercond., Vol. 20, 3, pp168-171, (2010).

11.07.2019

Heat is transferred to helium bath through:

- superfluid helium
- cable insulation

Thermal resistances equivalent

11.07.2019

Simulations – Network Model construction

11.07.2019

Experimental setup

cable stack immersed in superfluid helium

- 150 mm active part long
- 28 resistive CuNi_{10 wt.%} strands
 (with the same geometry as the LHC cable 1)
- Insulated according to EI#1 or EI#4
- Sample cured according LHC cycle (80 Mpa, 190 °C)

Measurements performed under pressure 30 MPa for EI#1 and 5 – 100 MPa for EI#4

D. Tommasini, D. Richter, "A new cable insulation scheme improving heat transfer to superfluid helium in Nb-Ti superconducting accelerator magnets", proceedings of *EPAC08*, pp2467-2469, (2008)

P. P. Granieri et al., "Heat transfer in an enhanced cable insulation scheme for the superconducting magnets of the LHC luminosity upgrade," IEEE Trans. Appl. Supercond., vol. 20, Issue 3, 2010

11.07.2019

Cable should demonstrate better performance than measured!

11.07.2019

11.07.2019

11.07.2019

4

Enhanced cable insulation ANSYS model (C. Lorin)

The ANSYS model shows that the cross-section of the channels is strongly reduced, i.e., by 20 to 60% depending on the applied pressure,

Insulation	EI#1			EI#4			
Load (MPa)	30	60	100	25	50	100	
Average	22%	33%	42%	20%	39%	54%	
Maximum	30%	61%	62%	25%	52%	61%	
Network Model	50%	-	-	28%	56%	66%	

11.07.2019

Summary

- Enhanced insulation studies completed
- Model validation performed
 - \rightarrow One fitting parameter (channel geometry and cross-section)
 - \rightarrow Agreement with measurements when He channel sizes reduce by 50%
 - \rightarrow Model checked with ANSYS simulatons

What next?

11.07.2019

4

Model validation - TQ magnet

MP 17-19

RE -

MP 17-19

LE +

11.07.2019

Model validation - TQ magnet

Jane 1 Sb. Ground insulation: Kapton 20 Sa. Ground insulation: Kapton 4b. Outer layer: S-2 glass + epoxy 4a. Quench heater: SS+Kapton 90 90 91 90 92 91 93 90 91 91 92 91 93 91 94 91 93 91 94 91 95 92 94 91 94 91 95 92 94 91 95 91 91 91 91 91 92 91 91 94 91 91 92 91 91 91 91 91 91 91 92 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91		HELIUM 11. Yoke 10. Collar 9. Collaring shoe Stainless Steel						
Talteat: Stanless Steel Talteat: Stanless Steel Gb.Midplane insulation: Kapton Gb.Midplane insulation: Kapton Sb. Ground insulation: Kapton Sb. Good insulation: Kapton Sb. Good insulation: Kapton Sb. Good insulation: Kapton Sb. Good insulation: Kapton	mm	5b. Ground insulation: Kapton 5a. Ground insulation: Kapton 4b. Outer layer: S-2 glass + epoxy 4a. Ouench heater: SS+Kapton						
Jarter: S-2 glass + epoxy Gb. Midplane in 0a. Midplane in 0b. Midplane in 0b. Midplane in 3a. Quench heater: SS+Kapton 3b. Inner lever: S - 2 glass + errory	7b.Heater: Kapton shin ulation: Kapton ulation: Kapton ulation: Kapton Bole Bole Bole							
29. Go. Mid- 29. Go. Mid- 29		2. Interlayer: S-2 glass + epoxy						
3a. Quench heater: SS+Kapton 3b. Inner layer: S.2 glass + growy	7a.Heater: Stainless Steel	6b.Mid	6a.Mid	5b. Gi	cable	1		8 POLE
$\mathbf{N} = \mathbf{N} + $								

Data from measurements

TQC02a parameters					
layer	material	MJR	RRP		
		[mil]/[mm]	[mil]/[mm]		
1	S-2+epoxy	3.9/ 0.099	3.75 / 0.095		
2	S-2+epoxy	12.9/ 0.327	6.5/ 0.165		
3a	Kapton	1.7/0.043	0		
3b	S-2+epoxy	11.8 / 0.299	8.2 / 0.208		
4a	Kapton	1.7/0.043	1.7/0.043		
4b	S-2 +epoxy	10.77 / 0.273	6.5/ 0.165		
5a	Kapton	5 / 0.127	5/0.127		
5b	Kapton	5 / 0.127	5/0.127		
ба	Kapton	3 / 0.0762	3 / 0.0762		
6b	Kapton	2 / 0.0508	2 / 0.0508		
7a	Stainless steel	1/0.0254 (9.5 mm width)	1/0.0254 (9.5 mm width)		
7b	Kapton	1/0.0254	1/0.0254		
8	S-2+epoxy	3 / 0.0762	3 / 0.0762		
9	Stainless steel	31/0.7874	31/0.7874		

11.07.2019

Model parameters - Material properties

- Material properties at low temperatures
 - \rightarrow Coil insulation (Polyimide, G10)

 \rightarrow experimental data available

Material data implemented in Network Model

Polyimide & G10

Bibliography:

- 1. B. Baudouy, *"Kapitza resistance and thermal conductivity of Kapton in superfluid helium*", Cryogenics 43(2003), 667-672,
- Lawrence et al., "The thermal conductivity of Kapton HN between 0.5 and 5 K", Cryogenics 40 (2000), 203-207,
- 3. B. Baudouy, J. Polinski, *"Thermal conductivity and Kapitza resistance of epoxy resin fiberglass tape at superfluid helium temperature"*, Cryogenics 49(2009), 138-143

11.07.2019

Model parameters - Critical current parametrization

Critical current parametrization: Bref=12T, Tref=4.2K

MJR: Jcref=1954 A/mm2 Tc0= 17.6 K Bc20= 26.6 T C0=31848 A/mm² T^{1/2}

RRP: Jcref=2404 A/mm2 Tc0=17.2 K Bc20=26.3 T C0=40558 A/mm² T^{1/2}

L.T. Summers, M.W. Guinan, J.R. Miller, P.A. Hahn, A model for the prediction of Nb3Sn critical current as a function of field, temperature, strain and radiation damage, IEEE Trans. Magn., 27 (2): 2041-2044, 1991.

11.07.2019

Thermal model of LARP TQ magnets

TQC02 model validation 12,0 10,0 8,0 Iquench [kA] 6,0 4,0 • RRP measurements (1.9K) 2,0 ■ MJR measurements (1.9K) ——MJR simulations (1.9K) Cryocomp -RRP simulations (1.9K) Cryocomp 0,0 5 10 15 20 25 30 35 40 45 0 Heat load [W/m]

Citical current parametrization: Bref=12T Tref=4.2K

RRP: Jcref=2404 A/mm2 Tc0=17.2 Bc20=26.3 C0=40558

MJR: Jcref=1954 A/mm2 Tc0= 17.6 Bc20= 26.6 C0=31848

11.07.2019

Thermal model of LARP TQ magnets

Citical current parametrization: Bref=12T Tref=4.2K

RRP: Jcref=2404 A/mm2 Tc0=17.2 Bc20=26.3 C0=40558

MJR: Jcref=1954 A/mm2 Tc0= 17.6 Bc20= 26.6 C0=31848

11.07.2019

What next?

11.07.2019

45

Nb₃Sn HQ magnets modeling

- LARP Nb₃Sn thermal modeling objectives:
 - → HQ coil insulation study \rightarrow feedback to coil design
 - \rightarrow size of the He channels in the HQ magnets
 - around cold bore
 - in the poles
 - → Magnets quench limit calculation
 - MARS/FLUKA input needed

Beam pipe also is a source of heat!

e Heat load simulations with MARS

(3 mm segmented tungsten absorber Details: V.V. Kashikhin et al., "Performance of Nb₃Sn quadrupole magnet under localized thermal load"Fermilab-conf-09-316-TD)₂

→ Heat load interpolation algorithm implement (agree heat load map with conductor map)

Nb₃Sn HQ magnet modeling - results

LARP Nb₃Sn thermal modeling :

- → Heat load (HL) = 2*MARS simulations (L=5*10^34)
- → HQ inner coil insulation impact
- \rightarrow size of the He channels in the HQ magnets
 - around cold bore ← set 1.29 mm
 - in the poles ← set d=5 mm every 10 cm
- → HL in the beam pipe = HL inner cable layer

MARS simulations for L=2.5*10^34 (N. Mokhov)

11.07.2019

Nb₃Sn HQ magnet – Temperature margin

H. Felice – HQ ROXIE simulations

Nb₃Sn HQ modeling - results

What next?

11.07.2019

Quench limit calculation

11.07.2019

Quench limit calculation

11.07.2019

Summary

- Reliable thermal models of superconducting magnets have been developed
- Model was validated with measurements performed at CERN and FNAL
- Model was cross checked with COMSOL

thermal performance

- Model calculated LHC magnets quench limits at steady state conditions
- Model wass used to study the impact of new magnets design parameters on magnet

D. Bocian, "Heat Transfer in High Field Superconducting Accelerator Magnets", monography: ISBN 978-83-63542-13-9

What next?

Model to be implemented to transient cases?

Heat load in the LHC magnets

Transient losses ~ns to ~ms

- Enthalpy of the cable (metal only) (~ns)
- Heat transfer to helium volume inside the cable ($\sim \mu s$)
- Enthalpy of the cable (metal + He) (~ms)

- Steady-state losses
 - Transfer of the heat from cable to the heat reservoir (~s)
 Magnet structure and geometry of cooling channels

b – bunch; e – "empty" bunch

What next?

Transient model!

11.07.2019