
Version 10.5

Scoring I

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

• Introduction to sensitivity
• Command-based scoring
• Add a new scorer/filter

Scoring I - M.Asai (SLAC) 2

Version 10.5

Retrieving information from Geant4

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.
– You have to do something to extract information useful to you.

• There are three ways:
– Built-in scoring commands

• Most commonly-used physics quantities are available.
– Use scorers in the tracking volume

• Create scores for each event
• Create own Run class to accumulate scores

– Assign G4VSensitiveDetector to a volume to generate “hit”.
• Use user hooks (G4UserEventAction, G4UserRunAction) to get event /

run summary
• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,

etc.)
– You have full access to almost all information
– Straight-forward, but do-it-yourself

Scoring I - M.Asai (SLAC) 4

This talk

Version 10.5

Command-based scoring

Command-based scoring

• Command-based scoring functionality offers the built-in scoring mesh and various
scorers for commonly-used physics quantities such as dose, flux, etc.
– Due to small performance overhead, it does not come by default.

• To use this functionality, access to the G4ScoringManager pointer after the
instantiation of G4(MT)RunManager in your main().

#include �G4ScoringManager.hh�
int main()
{
G4RunManager* runManager = new G4MTRunManager;
G4ScoringManager* scoringManager =

G4ScoringManager::GetScoringManager();
…

• All of the UI commands of this functionality are in /score/ directory.
• /examples/extended/runAndEvent/RE03

Scoring I - M.Asai (SLAC) 6

Command-based scorers

Scoring I - M.Asai (SLAC) 7

Define a scoring mesh
• To define a scoring mesh, the user has to specify the followings.

1. Shape and name of the 3D scoring mesh.
• Currently, box and cylinder are available.

2. Size of the scoring mesh.
• Mesh size must be specified as "half width" similar to the arguments of

G4Box / G4Tubs.
3. Number of bins for each axes.

• Note that too many bins causes immense memory consumption.
4. Specify position and rotation of the mesh.

• If not specified, the mesh is positioned at the center of the world volume
without rotation.

define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30
/score/mesh/translate/xyz 0. 0. 100. cm

• The mesh geometry can be completely independent to the real material geometry.

Scoring I - M.Asai (SLAC) 8

Scoring quantities
• A mesh may have arbitrary number of scorers. Each scorer scores one physics

quantity.
– energyDeposit * Energy deposit scorer.
– cellCharge * Cell charge scorer.
– cellFlux * Cell flux scorer.
– passageCellFlux * Passage cell flux scorer
– doseDeposit * Dose deposit scorer.
– nOfStep * Number of step scorer.
– nOfSecondary * Number of secondary scorer.
– trackLength * Track length scorer.
– passageCellCurrent * Passage cell current scorer.
– passageTrackLength * Passage track length scorer.
– flatSurfaceCurrent * Flat surface current Scorer.
– flatSurfaceFlux * Flat surface flux scorer.
– nOfCollision * Number of collision scorer.
– population * Population scorer.
– nOfTrack * Number of track scorer.
– nOfTerminatedTrack * Number of terminated tracks scorer.

Scoring I - M.Asai (SLAC) 9
/score/quantity/xxxxx <scorer_name> <unit>

List of provided primitive scorers
• Concrete Primitive Scorers (See Application Developers Guide 4.4.6)

– Track length
• G4PSTrackLength, G4PSPassageTrackLength

– Deposited energy
• G4PSEnergyDepsit, G4PSDoseDeposit, G4PSChargeDeposit

– Current/Flux
• G4PSFlatSurfaceCurrent,

G4PSSphereSurfaceCurrent,G4PSPassageCurrent, G4PSFlatSurfaceFlux,
G4PSCellFlux, G4PSPassageCellFlux

– Others
• G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep

Scoring I - M.Asai (SLAC) 10

angle

V : Volume

L : Total step length in the cell.

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

SurfaceFlux :
Sum up 1/cos(angle) of
injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical cell.

Filter
• Each scorer may take a filter.

– charged * Charged particle filter.
– neutral * Neutral particle filter.
– kineticEnergy * Kinetic energy filter.

/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>

– particle * Particle filter.
/score/filter/particle <fname> <p1> … <pn>

– particleWithKineticEnergy * Particle with kinetic energy filter.
/score/filter/ParticleWithKineticEnergy

<fname> <eLow> <eHigh> <unit> <p1> … <pn>

/score/quantity/energyDeposit eDep MeV

/score/quantity/nOfStep nOfStepGamma

/score/filter/particle gammaFilter gamma

/score/quantity/nOfStep nOfStepEMinus

/score/filter/particle eMinusFilter e-

/score/quantity/nOfStep nOfStepEPlus

/score/filter/particle ePlusFilter e+

/score/close

Scoring I - M.Asai (SLAC) 11
Close the mesh when defining scorers is done.

Same primitive scorers
with different filters
may be defined.

Drawing a score

• Projection

/score/drawProjection <mesh_name> <scorer_name> <color_map>

• Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column>

<color_map>

• Color map

– By default, linear and log-scale color maps are available.

– Minimum and maximum values can be defined by

/score/colorMap/setMinMax command. Otherwise, min and max values are

taken from the current score.

Scoring I - M.Asai (SLAC) 12

Write scores to a file

• Single score
/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>

• All scores
/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

• By default, values are written in CSV.
• By creating a concrete class derived from G4VScoreWriter base class, the user

can define his own file format.
– Example in /examples/extended/runAndEvent/RE03
– User�s score writer class should be registered to G4ScoringManager.

Scoring I - M.Asai (SLAC) 13

Energy spectrum?

• One of most frequently asked questions is “How to get energy spectrum?”.
• Create arbitrary number of flux scorers of same kind combined with particle and kinetic

energy filters.

/score/quantity/flatSurfaceFlux flux0
/score/filter/particleWithKineticEnergy range0 10. 20. MeV e-
/score/quantity/flatSurfaceFlux flux1
/score/filter/particleWithKineticEnergy range1 20. 30. MeV e-
/score/quantity/flatSurfaceFlux flux2
/score/filter/particleWithKineticEnergy range2 30. 40. MeV e-
/score/quantity/flatSurfaceFlux flux3
/score/filter/particleWithKineticEnergy range3 40. 50. MeV e-

Scoring I - M.Asai (SLAC) 14

More than one scoring meshes

• You may define more than one scoring
mesh.
– And, you may define arbitrary

number of primitive scorers to each
scoring mesh.

• Mesh volumes may overlap with other
meshes and/or with mass geometry.

• A step is limited on any boundary.
• Please be cautious of too many meshes,

too granular meshes and/or too many
primitive scorers.
– Memory consumption
– Computing speed

Scoring I - M.Asai (SLAC) 15

Version 10.5

Add a new scorer/filter to command-based scorers

Scorer base class

• G4VPrimitiveScorer is the abstract base of all scorer classes.
• To make your own scorer you have to implement at least:

– Constructor
– Initialize()

• Initialize G4THitsMap<G4double> map object
– ProcessHits()

• Get the physics quantity you want from G4Step, etc. and fill the map
– Clear()
– GetIndex()

• Convert three copy numbers into an index of the map
• G4PSEnergyDeposit3D could be a good example.
• Create your own messenger class to define /score/quantity/<your_quantity>

command.
– Refer to G4ScorerQuantityMessengerQCmd class.

Scoring I - M.Asai
(SLAC)

17

Creating your own scorer
• Though we provide most commonly-used scorers, you may want to create your own.

– If you believe your requirement is quite common, just let us know, so that we will add
a new scorer.

• G4VPrimitiveScorer is the abstract base class.
class G4VPrimitiveScorer
{
public:

G4VPrimitiveScorer(G4String name, G4int depth=0);
virtual ~G4VPrimitiveScorer();

protected:
virtual G4bool ProcessHits(G4Step*,

G4TouchableHistory*) = 0;
virtual G4int GetIndex(G4Step*);

public:
virtual void Initialize(G4HCofThisEvent*);
virtual void EndOfEvent(G4HCofThisEvent*);
virtual void clear();

…
};

• Methods written in red will be discussed at “Scoring 2” talk.
Scoring I - M.Asai (SLAC) 18

Filter class

• G4VSDFilter
– Abstract base class which you can use to make your own filter
class G4VSDFilter
{
public:

G4VSDFilter(G4String name);
virtual ~G4VSDFilter();

public:
virtual G4bool Accept(const G4Step*) const = 0;

…

• Create your own messenger class to define /score/filter/<your_filter> command.
– Refer to G4ScorerQuantityMessenger class.

Scoring I - M.Asai
(SLAC)

19

