
Version 10.5

Geometry III

Makoto Asai (SLAC)
Geant4 Tutorial Course



Contents

• Magnetic field

• Field integration and other types of field

• GDML/CAD interfaces

• Geometry checking tools

• Geometry optimization

Geometry III - M.Asai (SLAC) 2



Version 10.5

Defining a magnetic field



Magnetic field (1)

• Create your Magnetic field class. It must be instantiated in 

ConstructSDandField() method of your DetectorConstruction

– Uniform field : 

• Use an object of the G4UniformMagField class

G4MagneticField* magField =   

new G4UniformMagField(G4ThreeVector(1.*Tesla,0.,0.);

– Non-uniform field :

• Create your own concrete class derived from G4MagneticField and 

implement GetFieldValue method.

void MyField::GetFieldValue(

const double Point[4], double *field) const

• Point[0..2] are position in global coordinate system, Point[3] is time

• field[0..2] are returning magnetic field
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Global and local fields
• One field manager is associated with the ‘world’ and it is set in 

G4TransportationManager

• Other volumes can override this
– An alternative field manager can be associated with any logical volume

• The field must accept position in global coordinates and return field in 
global coordinates

– By default this is propagated to all its daughter volumes
G4FieldManager* localFieldMgr 

= new G4FieldManager(magField);

logVolume->setFieldManager(localFieldMgr, true);

where ‘true’ makes it push the field to all the volumes it contains, unless a 
daughter has its own field manager.

• Customizing the field propagation classes

– Choosing an appropriate stepper for your field
– Setting precision parameters
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Magnetic field (2)

MyField* fMyField = new MyField();

G4Fieldmanager* fFieldMgr = new G4FieldManager();

fFieldMgr->SetDetectorField(fMyField);

fFieldMgr->CreateChordFinder(fMyField);

G4bool forceToAllDaughters = true;

fMagneticLogical->SetFieldManager(fFieldMgr, 

forceToAllDaughters);

// Register the field and its manager for deleting

G4AutoDelete::Register(fMagneticField);

G4AutoDelete::Register(fFieldMgr);

• /example/basic/B5 is a good starting point
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Field integration

• In order to propagate a particle inside a field  (e.g. magnetic, electric or both), we 
solve the equation of motion of the particle in the field. 

• We use a Runge-Kutta method for the integration of the ordinary differential 
equations of motion. 

– Several Runge-Kutta ‘steppers’ are available.

• In specific cases other solvers can also be used: 

– In a uniform field, using the analytical solution.

– In a smooth but varying field, with RK+helix.

• Using the method to calculate the track's motion in a field, Geant4 breaks up this 
curved path into linear chord segments. 

– We determine the chord segments so that they closely approximate the 
curved path.
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Tracking in field

• We use the chords to interrogate the G4Navigator, to see whether the track has 
crossed a volume boundary.

• One physics/tracking step can create several chords.
– In some cases, one step consists of several helix turns.

• User can set the accuracy of the volume intersection, 
– By setting a parameter called the “miss distance”

• It is a measure of the error in whether the approximate track intersects a 
volume. 

• It is quite expensive in CPU performance to set too small “miss distance”.
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Regular versus Smooth Trajectory

Yellow are the actual step points used by Geant4
Magenta are auxiliary points added just for purposes of visualization



Smooth Trajectory Makes Big Difference for Trajectories that 
Loop in a Magnetic Field

n Yellow dots are the actual step points used by Geant4
n Magenta dots are auxiliary points added just for purposes of visualization



Tunable parameters
• In addition to the “miss distance” there are two more 

parameters which the user can set in order to adjust the 
accuracy (and performance) of tracking in a field. 

– These parameters govern the accuracy of the 
intersection with a volume boundary and the accuracy 
of the integration of other steps. 

• The “delta intersection” parameter is the accuracy to which 
an intersection with a volume boundary is calculated. This 
parameter is especially important because it is used to limit 
a bias that our algorithm (for boundary crossing in a field) 
exhibits. The intersection point is always on the 'inside' of 
the curve. By setting a value for this parameter that is much 
smaller than some acceptable error, the user can limit the 
effect of this bias. 
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Tunable parameters

• The “delta one step” parameter is the accuracy for the endpoint of 'ordinary' 
integration steps, those which do not intersect a volume boundary. This parameter 
is a limit on the estimation error of the endpoint of each physics step.

• “delta intersection” and “delta one step” are strongly coupled. These values must 
be reasonably close to each other. 

– At most within one order of magnitude

• These tunable parameters can be set by

theChordFinder->SetDeltaChord( miss_distance );

theFieldManager->SetDeltaIntersection( delta_intersection );

theFieldManager->SetDeltaOneStep( delta_one_step );

• Further details are described in Section 4.3 (Electromagnetic Field) of the 
Application Developers Manual.
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Field integration 
and
Other types of field



Customizing field integration 

• Runge-Kutta integration is used to compute the motion of a charged track in a 
general field. There are many general steppers from which to choose, of low and 
high order, and specialized steppers for pure magnetic fields. 

• By default, Geant4 uses the classical fourth-order Runge-Kutta stepper 
(G4ClassicalRK4), which is general purpose and robust. 

– If the field is known to have specific properties, lower or higher order 
steppers can be used to obtain the results of same quality using fewer 
computing cycles. 

• In particular, if the field is calculated from a field map, a lower order stepper is 
recommended. The less smooth the field is, the lower the order of the stepper 
that should be used. 

– The choice of lower order steppers includes the third order stepper 
G4SimpleHeum, the second order G4ImplicitEuler and G4SimpleRunge, and 
the first order G4ExplicitEuler. A first order stepper would be useful only for 
very rough fields. 

– For somewhat smooth fields (intermediate), the choice between second and 
third order steppers should be made by trial and error. 
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Customizing field integration 

• Trying a few different types of steppers for a particular field or application is 
suggested if maximum performance is a goal. 

• Specialized steppers for pure magnetic fields are also available. They take into 
account the fact that a local trajectory in a slowly varying field will not vary 
significantly from a helix. 

– Combining this in with a variation, the Runge-Kutta method can provide 
higher accuracy at lower computational cost when large steps are possible. 

• To change the stepper 

theChordFinder
->GetIntegrationDriver() 
->RenewStepperAndAdjust( newStepper ); 

• Further details are described in Section 4.3 (Electromagnetic Field) of the 
Application Developers Manual.
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Other types of field

• The user can create their own type of field, inheriting from G4VField, and an 
associated Equation of Motion class (inheriting from G4EqRhs) to simulate other 
types of fields. Field can be time-dependent.

• For pure electric field, Geant4 has G4ElectricField and G4UniformElectricField
classes. For combined electromagnetic field, Geant4 has G4ElectroMagneticField
class. 

• Equation of Motion class for electromagnetic field is G4MagElectricField.

G4ElectricField* fEMfield
= new G4UniformElectricField( G4ThreeVector(0., 100000.*kilovolt/cm, 0.) ); 

G4EqMagElectricField* fEquation = new G4EqMagElectricField(fEMfield); 
G4MagIntegratorStepper* fStepper = new G4ClassicalRK4( fEquation, nvar ); 
G4FieldManager* fFieldMgr

= G4TransportationManager::GetTransportationManager()-> GetFieldManager(); 
fFieldManager->SetDetectorField( fEMfield );
G4MagInt_Driver* fIntgrDriver 

= new G4MagInt_Driver(fMinStep, fStepper,
fStepper->GetNumberOfVariables() );

G4ChordFinder* fChordFinder = new G4ChordFinder(fIntgrDriver); 16Geometry III - M.Asai (SLAC)
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GDML/CAD interfaces



GDML and CAD Interfaces

• Up to now, the course has shown how to define materials and volumes from C++.
• This part of slides shows some alternate ways to define geometry at runtime by 

providing a file-based detector description.
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GDML : Geometrical Description Modeling Language

• An XML-based language designed as an application independent persistent format for 
describing the geometries of detectors.
– Implements “geometry trees” which correspond to the hierarchy of volumes a 

detector geometry can be composed of
– Allows materials to be defined and solids to be positioned

• Because it is pure XML, GDML can be used universally
– Not just for Geant4
– Can be format for interchanging geometries among different applications.
– Can be used to translate CAD geometries to Geant4

• XML is simple
– Rigid set of rules, self-describing data validated against schema

• XML is extensible
– Easy to add custom features, data types

• XML is Interoperable to OS’s, languages, applications
• XML has hierarchical structure

– Appropriate for Object-Oriented programming
– Detector/sub-detector relationships
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GDML structure

• Contains numerical values of constants, positions, rotations and scales that will be used 
later on in the geometry construction.
– Uses CLHEP expressions

• Constants
<constant name=“length” value=“6.25”/>

• Variables
<variable name=“x” value=“6”/>

– Once defined, can be used anywhere later, e.g.
<variable name=“y” value=“x/2”/>
<box name=“my_box” x=“x” y=“y” z=“x+y”/>

• Positions
<position name=“P1” x=“25.0” y=“50.0” z=“75.0” unit=“cm”/>

• Rotations
<rotation name=“RotateZ” z=“30” unit=“deg”/>

• Matrices
<matrix name=“m” coldim=“3” values=“ 0.4 9 126

8.5 7 21
34.6 7 9”/>
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GDML structure

• Simple Elements

<element Z="8" formula="O" name="Oxygen" >

<atom value="16" />

</element>

• Material by number of atoms (“molecule”)

<material name="Water" formula="H2O">

<D value="1.0" />

<composite n="2" ref="Hydrogen" />

<composite n="1" ref="Oxygen" />

</material>

• Material as a fractional mixture of elements or materials, (“compound”):

<material formula="air" name="Air" >

<D value="0.00129" />

<fraction n="0.7" ref="Nitrogen" />

<fraction n="0.3" ref="Oxygen" />

</material>
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GDML solids

• Box
• Cone Segment
• Ellipsoid
• Elliptical Tube
• Elliptical Cone
• Orb
• Paraboloid
• Parallelepiped
• Polycone
• Polyhedron
• Sphere
• Torus Segment

• Trapezoid (x&y vary along z)
• General Trapezoid
• Tube with Hyperbolic Profile
• Cut Tube
• Tube Segment
• Twisted Box
• Twisted Trapezoid
• Twisted General Trapezoid
• Twisted Tube Segment
• Extruded Solid
• Tessellated Solid
• Tetrahedron

Geometry III - M.Asai (SLAC) 22



GDML Boolean solid

• The Boolean operations union, subtraction and intersection are also supported, e.g.

<box name=“box_1” x=“1” y=“5” z=“20” />

<box name=“box_2” x=“4” y=“4.5” z=“18” />

<union name=“union” >

<first ref=“box_1” />
<second ref=“box_2”/>

<positionref ref=“union_position” />

<rotationref ref=“union_rotation” />

</union>
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GDML volumes

• Volumes are created from solids and materials that were previously defined in this or a 
linked GDML file

• Both logical and physical volumes are defined in one
<volume name="World">

<materialref ref="Air"/>
<solidref ref="WorldBox"/>
<physvol>
<volumeref ref="vol0"/>

<positionref ref="center"/>
<rotationref ref="identity"/>

</physvol>
</volume>
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Importing GDML file

• GDML files can be directly imported into Geant4 geometry, using the GDML plug-in 
facility:

#include “G4GDMLParser.hh”
• Generally you will want to put the following lines into your DetectorConstruction class:

G4GDMLParser parser;
parser.Read(“geometryFile.gdml”);
G4VphysicalVolume* W=parser.GetWorldVolume();

• To include the Geant4 module for GDML, 
– Install the XercesC parser (version 2.8.0 or 3.0.0)

http://xerces.apache.org/xerces-c/download.cgi
– Set appropriate environment variables when G4 libraries are built

• Examples available in:
$G4INSTALL/examples/extended/persistency/gdml
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Importing CAD geometry

• Users with 3D engineering drawings may want to incorporate these into their Geant4 

simulation as directly as possible

• Difficulties include:

– Proprietary, undocumented or changing CAD formats

– Usually no connection between geometry and materials

– Mismatch in level of detail required to machine a part and that required to transport 

particles in that part

• CAD is never as easy as you might think (if the geometry is complex enough to require CAD in 

the first place)

• CADMesh is a direct CAD model import interface for GEANT4 optionally leveraging VCGLIB, 

and ASSIMP by default. Currently it supports the import of triangular facet surface meshes 

defined in formats such as STL and PLY. A G4TessellatedSolid is returned and can be included 

in a standard user detector constructor.

– https://code.google.com/p/cadmesh/

• One output format most CAD programs do support is STEP

– Not a complete solution, in particular does not contain material information

– There are movements under way to get new formats that contain additional 

information, but none yet widely adopted.
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Converting STEP to GDML

• Imperfect, but still helpful solutions are tools to convert STEP to GDML and provide the 
user a way to add materials information

• There are two cases where existing CAD programs have added GDML export features. 
Since these CAD programs can also read in STEP, they can be used as STEP to GDML 
converters.
– Neither option is free, neither option works perfectly
– ST-Viewer

• http://www.steptools.com
– FastRad

• GDML export extension was funded by European Space Agency
• Not free except for limited, trial mode that can handle only a small number of 

volumes
• http://www.fastrad.net/

• Discussion of these solutions takes place in the Geant4 Persistency forum:
http://hypernews.slac.stanford.edu/HyperNews/geant4/get/persistency.html

• Useful technical note:
– Linking computer-aided design (CAD) to Geant4-based Monte Carlo simulations for 

precise implementation of complex treatment head geometries., Constantin et. al., 
Phys Med Biol. 2010 Apr 21;55(8):N211-20. Epub 2010 Mar 26
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CADMesh

• CADMesh is a direct CAD model import interface for GEANT4 optionally leveraging 
VCGLIB, and ASSIMP by default. Currently it supports the import of triangular facet 
surface meshes defined in formats such as STL and PLY. A G4TessellatedSolid is returned 
and can be included in a standard user detector construction.

– https://code.google.com/p/cadmesh/

– http://arxiv.org/pdf/1105.0963.pdf
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CADMesh
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Loading CADMesh solid

• CADMesh provides a G4TessellatedSolid object (a kind of G4VSolid).

#include “CADMesh.hh”

G4VPhysicalVolume* MyDetectorConstruction::Construct()

{

…

CADMesh cadMesh;

G4VSolid* aSolid = cadMesh.LoadMesh( file_name, file_type );

G4LogicalVolume* aLV = new G4LoficalVolume( aSolid, material, “name” );

G4VPhysicalVolume* aPV = new G4PVPlacement( 0,

G4ThreeVector(x,y,z), aLV, “name”, motheLV, 0, 0 );

…
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Attila
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Attila
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Geometry checking tools



Debugging geometries
• An protruding volume is a contained daughter volume which actually protrudes from its 

mother volume.

• Volumes are also often positioned in a same volume with the intent of not provoking 

intersections between themselves. When volumes in a common mother actually 

intersect themselves are defined as overlapping.

• Geant4 does not allow for malformed geometries, neither protruding nor overlapping. 

– The behavior of navigation is unpredictable for such cases.

• The problem of detecting overlaps between volumes is bounded by the complexity of 

the solid models description.

• Utilities are provided for detecting wrong positioning

– Optional checks at construction

– Kernel run-time commands

– Graphical tools (DAVID, OLAP)
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Optional checks at construction

• Constructors of G4PVPlacement and G4PVParameterised have an optional 
argument “pSurfChk”.
G4PVPlacement(G4RotationMatrix* pRot,

const G4ThreeVector &tlate, 
G4LogicalVolume *pDaughterLogical, 
const G4String &pName, 
G4LogicalVolume *pMotherLogical, 
G4bool pMany, G4int pCopyNo, 
G4bool pSurfChk=false); 

• If this flag is true, overlap check is done at the construction.
– Some number of points are randomly sampled on the surface of creating 

volume.
– Each of these points are examined

• If it is outside of the mother volume, or
• If it is inside of already existing other volumes in the same mother 

volume.
• This check requires lots of CPU time, but it is worth to try at least once when you 

implement your geometry of some complexity.
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Debugging run-time commands
• Built-in run-time commands to activate verification tests for the user geometry 

are defined
– to start verification of geometry for overlapping regions based on a 

standard grid setup, limited to the first depth level
geometry/test/run or  geometry/test/grid_test

– applies the grid test to all depth levels (may require lots of CPU time!)
geometry/test/recursive_test

– shoots lines according to a cylindrical pattern
geometry/test/cylinder_test

– to shoot a line along a specified direction and position
geometry/test/line_test

– to specify position for the line_test
geometry/test/position

– to specify direction for the line_test
geometry/test/direction
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Debugging run-time commands

• Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes

The volumes Tracker[0] and Overlap[0],
both daughters of volume World[0],
appear to overlap at the following points in global coordinates: (list 
truncated)

length (cm)    ----- start position (cm) ----- ----- end position (cm) -----
240           -240      -145.5      -145.5     0       -145.5      -145.5

Which in the mother coordinate system are:
length (cm)    ----- start position (cm) ----- ----- end position (cm) -----
. . .

Which in the coordinate system of Tracker[0] are:
length (cm)    ----- start position (cm) ----- ----- end position (cm) -----
. . .

Which in the coordinate system of Overlap[0] are:
length (cm)    ----- start position (cm) ----- ----- end position (cm) -----
. . .
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Debugging tools: DAVID

• DAVID is a graphical debugging tool for detecting 
potential intersections of volumes

• Accuracy of the graphical representation can be 
tuned to the exact geometrical description.
– physical-volume surfaces are automatically 

decomposed into 3D polygons
– intersections of the generated polygons  are 

parsed.
– If a polygon intersects with another one, the 

physical volumes associated to these polygons 
are highlighted in color (red is  the default).

• DAVID can be downloaded from the Web as external 
tool for Geant4
– http://geant4.kek.jp/~tanaka/
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Geometry optimization
("voxelization")



Smart voxelization

• In case of Geant 3.21, the user had to carefully implement his/her geometry to 

maximize the performance of geometrical navigation.

• While in Geant4, user’s geometry is automatically optimized to be most suitable to 

the navigation. - "Voxelization"

– For each mother volume, one-dimensional virtual division is performed.

– Subdivisions (slices) containing same volumes are gathered into one.

– Additional division again using second and/or third Cartesian axes, if needed.

• "Smart voxels" are computed at initialisation time

– When the detector geometry is closed

– Does not require large memory or computing resources

– At tracking time, searching is done in a hierarchy of virtual divisions
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Detector description tuning
• Some geometry topologies may require ‘special’ tuning for ideal and efficient 

optimisation

– for example: a dense nucleus of volumes included in very large mother 
volume

• Granularity of voxelisation can be explicitly set
– Methods Set/GetSmartless() from G4LogicalVolume

• Critical regions for optimisation can be detected
– Helper class G4SmartVoxelStat for monitoring time spent in detector 

geometry optimisation

• Automatically activated if /run/verbose greater than 1

Percent      Memory     Heads    Nodes   Pointers    Total CPU    Volume

------- ------ ----- ----- -------- --------- -----------

91.70          1k         1       50         50         0.00    Calorimeter

8.30          0k         1        3          4         0.00    Layer
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Visualising voxel structure

• The computed voxel structure can be visualized with the final detector geometry

– Helper class G4DrawVoxels

– Visualize voxels given a logical volume

G4DrawVoxels::DrawVoxels(const G4LogicalVolume*)

– Allows setting of visualization attributes for voxels

G4DrawVoxels::SetVoxelsVisAttributes(…)

– useful for debugging purposes
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