
New tools for the simulation of coupled bunch instabilities
driven by electron cloud

G. Iadarola

Many thanks to:

IT HPC team and in particular N. Hoimyr, C. Lindqvist, P. Llopis

INFN-CNAF HPC team and in particular A. Falabella

ABP Computing Working Group

G. Arduini, X. Buffat, K. Li, L. Mether, E. Metral, A. Romano, G. Rumolo, L. Sabato

and J-L Vay (LBNL)

https://cern.service-now.com/service-portal/service-element.do?name=High-Performance-Computing
https://cern.ch/abp-computing

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

Introduction

• Instabilities driven by e-cloud arise from the coupling via electromagnetic forces
between the motion of the electrons and the dynamics of the proton beam

Electron dynamicsProton bunch

oscillations

• Due to the non-linear nature of the electron dynamics it is difficult to study these
instabilities using analytical treatments

• Modeling and understanding strongly relies on numerical simulations (macroparticle
codes)

o PyECLOUD-PyHEADTAIL suite(1), developed and maintained at CERN

(1) G. Iadarola, E. Belli, K. Li, L. Mether, A. Romano, G. Rumolo, “Evolution of Python Tools for the Simulation of Electron
Cloud Effects”, Proceedings of IPAC17

HeadTail

Introduction

These simulations are computationally very heavy:

• Electron motion is very fast requires very short time steps (~10 ps)

• Impact on the beam visible only on accumulated effect on many turns (~1 s)

• Many macroparticles are needed to minimize numerical noise (~250k per e-cloud
interaction)

• Until recently we were able to simulate only
single-bunch effects, i.e. coupling introduced
by the electrons between head and tail of the
same bunch:

o Short interaction time (few ns)

o Several simplifications possible

• We could not simulate “coupled-bunch
instabilities”, i.e. coupling among different
bunches within a bunch train:

o Requires the simulation of the full e-cloud
buildup process coupled with the beam
dynamics

o Too heavy for a standard computer…

Case study: instability of an LHC bunch train (72b) due to the interaction with the
e-cloud in the arc dipoles at 450 GeV (modeled by 8 e-cloud interactions)

Required computation time on single CPU core

Single interaction of the train with
the e-cloud

2.4 h

Task Time

Single turn (8 e-cloud interactions) 19.2 h

Instability simulation (1000 turns)
19000h

= 800 days
= 2.2 years

To make the simulation affordable,
we need to gain at least two orders of magnitude on the simulation time

 Possible only using High Performance Computing (HPC) resources

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

B2
trn:0

B3
trn:0

B4
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

Core 1 Core 3

Core 4

B2

B1
trn:0

trn:0

The different bunches
are placed in a queue
accessible by core 1

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Parallelization over accelerator segments

B2
trn:0

B3
trn:0

B4
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

Core 1 Core 3

Core 4

B2

B1
trn:0

trn:0

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

First iteration:

Parallelization over accelerator segments

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B2
trn:0

B4
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

B1
trn:1 Core 1 Core 3

Core 4

B3

B2
trn:0

trn:0

First iteration:
• Core 1 pops a bunch from the queue
• The bunch is sliced longitudinally (to compute

the interaction with the e-cloud)
• The interaction with the first accelerator

segment (including e-cloud) is computed
• The bunch is passed to the next core

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Parallelization over accelerator segments

B2
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

B2
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B4

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B3
trn:0

trn:0

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

At each iteration a new bunch
is taken from the queue

Parallelization over accelerator segments

B2
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

B3
trn:1

B1
trn:1

B2
trn:1

Core 1 Core 3

Core 4

B5

B4
trn:0

trn:0

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

At each iteration a new bunch
is taken from the queue

Parallelization over accelerator segments

B2
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

B4
trn:1

B2
trn:1

B3
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B6

B5
trn:0

trn:0

After the bunch interacts with the last segment:
• Slices are re-merged
• Synchrotron motion is applied

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Parallelization over accelerator segments

B2
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 1

Core 2

B4
trn:1

B2
trn:1

B3
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B6

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B5
trn:0

trn:0

After the bunch interacts with the last segment:
• Slices are re-merged
• Synchrotron motion is applied
• The bunch is pushed into the queue for the

next turn

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Parallelization over accelerator segments

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B5
trn:1

B3
trn:1

B4
trn:1

B2
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B8
trn:0

B9
trn:0

B1
trn:1

B1
trn:0

B7

B6
trn:0

trn:0

Loop continues for the
required number of turns…

Parallelization over accelerator segments

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B6
trn:1

B4
trn:1

B5
trn:1

B3
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B9
trn:0

B1
trn:1

B2
trn:1

B1
trn:0

B8

B7
trn:0

trn:0

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Loop continues for the
required number of turns…

Parallelization over accelerator segments

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B7
trn:1

B5
trn:1

B6
trn:1

B4
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B1
trn:1

B2
trn:1

B3
trn:1

B1
trn:0

B9

B8
trn:0

trn:0

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Loop continues for the
required number of turns…

Parallelization over accelerator segments

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B8
trn:1

B6
trn:1

B7
trn:1

B5
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B2
trn:1

B3
trn:1

B4
trn:1

B1
trn:0

B1

B9
trn:0

trn:1

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Loop continues for the
required number of turns…

Parallelization over accelerator segments

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B9
trn:1

B7
trn:1

B8
trn:1

B6
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B3
trn:1

B4
trn:1

B5
trn:1

B1
trn:0

B2

B1
trn:1

trn:1

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Parallelization over accelerator segments

Loop continues for the
required number of turns…

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B1
trn:2

B8
trn:1

B9
trn:1

B7
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B4
trn:1

B5
trn:1

B6
trn:1

B1
trn:0

B3

B2
trn:1

trn:1

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Loop continues for the
required number of turns…

Parallelization over accelerator segments

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B2
trn:2

B9
trn:1

B1
trn:2

B8
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B5
trn:1

B6
trn:1

B7
trn:1

B1
trn:0

B4

B3
trn:1

trn:1

Parallelization over accelerator segments

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

Loop continues for the
required number of turns…

B
u
n
c
h
 s

lo
t
q
u
e
u
e

Parallelization strategy: step 1

Core 2

B3
trn:2

B1
trn:2

B2
trn:2

B9
trn:1

Core 1 Core 3

Core 4

B2
trn:0

B6
trn:1

B7
trn:1

B8
trn:1

B1
trn:0

B5

B4
trn:1

trn:1

This approach allows exploiting a number of cores
equal to the number of e-cloud interactions
 In our case study (8 interactions) we can gain

up to a factor of 8 but not more…

Parallelization over accelerator segments

Each CPU-core simulates a
different portion of the
machine (each containing at
least one e-cloud interaction)

B2
trn:0

B3
trn:0

B4
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

Core 1 Core 3

Core 4

B2

B1
trn:0

trn:0

The simulation
starts as before…

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B2
trn:0

B4
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B1
trn:1 Core 1 Core 3

Core 4

B3

B2
trn:0

trn:0

The simulation
starts as before…

Parallelization over different turns

B2
trn:0

B5
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B2
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B4

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B3
trn:0

trn:0

The simulation
starts as before…

Parallelization over different turns

B2
trn:0

B6
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B3
trn:1

B1
trn:1

B2
trn:1

Core 1 Core 3

Core 4

B5

B4
trn:0

trn:0

Parallelization over different turns

The simulation
starts as before…

B2
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B4
trn:1

B2
trn:1

B3
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B6

B5
trn:0

trn:0

The simulation
starts as before…

Parallelization over different turns

B2
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B4
trn:1

B2
trn:1

B3
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B6

B5
trn:0

trn:0

Parallelization over different turns

Hypothesis: the e-cloud decays between
consecutive turns (abort gap)

B2
trn:0

B7
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B4
trn:1

B2
trn:1

B3
trn:1

B1
trn:1

Core 1 Core 3

Core 4

B6

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B5

Core 6

Core 5 Core 7

Core 8

trn:0

trn:0

 Once the bunch has completed
the first turn, instead of going
to the queue, it can be sent to a
second set of CPU-cores to
simulate the following turn

Hypothesis: the e-cloud decays between
consecutive turns (abort gap)

Parallelization over different turns

B2
trn:0

B8
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B5
trn:1

B3
trn:1

B4
trn:1

B2
trn:1

Core 1 Core 3

Core 4

B7

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B6

Core 6

B1
trn:2 Core 5 Core 7

Core 8

trn:0

trn:0

 Once the bunch has completed
the first turn, instead of going
to the queue, it can be sent to a
second set of CPU-cores to
simulate the following turn

Hypothesis: the e-cloud decays between
consecutive turns (abort gap)

Parallelization over different turns

B2
trn:0

B9
trn:0

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1
trn:0

Parallelization strategy: step 2

Core 2

B6
trn:1

B4
trn:1

B5
trn:1

B3
trn:1

Core 1 Core 3

Core 4

B8

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B7

Core 6

B2
trn:2

B1
trn:2

Core 5 Core 7

Core 8

trn:0

trn:0

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

Parallelization strategy: step 2

Core 2

B7
trn:1

B5
trn:1

B6
trn:1

B4
trn:1

Core 1 Core 3

Core 4

B9

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B8

Core 6

B3
trn:2

B1
trn:2

B2
trn:2

Core 5 Core 7

Core 8

trn:0

trn:0

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B9

Parallelization strategy: step 2

Core 2

B8
trn:1

B6
trn:1

B7
trn:1

B5
trn:1

Core 1 Core 3

Core 4

Core 6

B4
trn:2

B2
trn:2

B3
trn:2

B1
trn:2

Core 5 Core 7

Core 8

trn:0

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B6

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B1

Parallelization strategy: step 2

Core 2

B9
trn:1

B7
trn:1

B8
trn:1

trn:1

Core 1 Core 3

Core 4

Core 6

B5
trn:2

B3
trn:2

B4
trn:2

B2
trn:2

Core 5 Core 7

Core 8

trn:2

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B2

Parallelization strategy: step 2

Core 2

B1
trn:3

B8
trn:1

B9
trn:1

B7
trn:1

Core 1 Core 3

Core 4

Core 6

B6
trn:2

B4
trn:2

B5
trn:2

B3
trn:2

Core 5 Core 7

Core 8

trn:2

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B3

Parallelization strategy: step 2

Core 2

B2
trn:3

B9
trn:1

B1
trn:3

B8
trn:1

Core 1 Core 3

Core 4

Core 6

B7
trn:2

B5
trn:2

B6
trn:2

B4
trn:2

Core 5 Core 7

Core 8

trn:2

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B4

Parallelization strategy: step 2

Core 2

B3
trn:3

B1
trn:3

B2
trn:3

B9
trn:1

Core 1 Core 3

Core 4

Core 6

B8
trn:2

B6
trn:2

B7
trn:2

B5
trn:2

Core 5 Core 7

Core 8

trn:2

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B5

Parallelization strategy: step 2

Core 2

B4
trn:3

B2
trn:3

B3
trn:3

B1
trn:3

Core 1 Core 3

Core 4

Core 6

B9
trn:2

B7
trn:2

B8
trn:2

B6
trn:2

Core 5 Core 7

Core 8

trn:2

While a set of cores is simulating
the first turn for the tail of the
train another set of cores is
already simulating the second
turn for the head of the train

Parallelization over different turns

B
u
n
c
h
 s

lo
t
q
u
e
u
e

B6

Parallelization strategy: step 2

Core 2

B5
trn:3

B3
trn:3

B4
trn:3

B2
trn:3

Core 1 Core 3

Core 4

Core 6

B8
trn:2

B9
trn:2

B7
trn:2

Core 5 Core 7

Core 8

trn:2

B1
trn:4

• This trick can be repeated
multiple times (multiple rings
of CPUs)

• The number of CPU-cores that
can be exploited is limited by
the number of bunches (72 in
our test case)

Parallelization over different turns

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

Electrons need to be tracked also in between bunches (large fraction of the

computation time)

 By slicing the beam in shorter slots (made by an integer number of RF

buckets) we can share the workload over a larger number of CPUs

25 ns slots:

5 ns slots:

Parallelization strategy: step 3

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

Reminder on PyPARIS

Main objectives:

• Hide as much as possible the parallelization technology keep physics and

parallelization code physically separated

• The physics should be extendable by a developer who is unaware about the

parallelization details

• Keep possibility to change parallelization technology (e.g. MPI vs.

multiprocess) with no intervention on the physics code

• Minimize changes in existing tools (PyECLOUD, PyHEADTAIL, PyPIC etc…) to

avoid painful re-validation phases

Developed an additional python layer taking care only of the parallelization, separate
from PyHEADTAIL and PyECLOUD, and working together with them:

PyPARIS
Python Parallel Ring Simulator

More info at https://github.com/PyCOMPLETE/PyPARIS/wiki

https://github.com/PyCOMPLETE/PyPARIS/wiki

The PyPARIS parallelization layer

RingOfCPUs object
(implemented in PyPARIS)

Handles a set of processes organized in a ring

structure:

• Data transfer between processes

• Synchronization

• Handles special tasks performed by the

master process

• Handles “messages” broadcasted from the

master to all processes

This object is fully abstract (no physics

included) specific tasks to be performed are

defined by the Simulation object

Communicator (MPI or MPI-like)

Uses:

Simulation object
(can be modified by the user)

Defines the task to be performed by the

master and worker processes at the different

stages.

Physics of the simulation can be defined using

Python tools like:

PyHAEDTAIL PyECLOUD

PyPIC NAFFlib

User defined Python (or Python-callable)
code

The simulation is managed through two python objects (actually each process will have

an instance of the two classes)

Takes care of the parallelization Contains the physics

The PyPARIS parallelization layer

A new class called “ring_of_CPUs_multiturn” has been implemented in PyPARIS

 Made available for production in version 2.0.0

More info at https://github.com/PyCOMPLETE/PyPARIS/wiki

https://github.com/PyCOMPLETE/PyPARIS/releases
https://github.com/PyCOMPLETE/PyPARIS/wiki

import PyECLOUD, PyHEADTAIL, ...

class Simulation(object):
def __init__(self):

self.N_turns = 5000
self.N_parellel_rings = 10

def init_all(self):
Executed on all cores at the beginning of the simulation
- Generate the portion of the machine to be
simulated by the specific core.
- Insert and initialize the e-cloud elements
- At end-ring: prepare for global bunch operations
if self.ring_of_CPUs.I_am_at_end_ring:

self.non_parallel_part=\
self.machine.one_turn_map[-n_non_sliceable:]

def init_master(self):
Executed on the “master”, i.e. first core of first ring:
- Initialize the queue with the bunches to be simulated
return list_bunches

def init_start_ring(self):
Executed at each core that is at the start of a ring:
- Prepare bunch monitor
self.bunch_monitor = ...

[...]

PyPARIS multi-bunch: physics description

As for single-bunch parallel
simulations, physics is
described by writing a
simulation class
(description and full
example available in
github)

Each running process has
an instance of the
simulation class

https://github.com/PyCOMPLETE/PyPARIS/wiki/How-to-define-your-simulation-(multibunch)
https://github.com/PyCOMPLETE/PyPARIS/tree/master/test_multibunch

import PyECLOUD, PyHEADTAIL, ...

class Simulation(object):
def __init__(self):

self.N_turns = 5000
self.N_parellel_rings = 10

def init_all(self):
Executed on all cores at the beginning of the simulation
- Generate the portion of the machine to be
simulated by the specific core.
- Insert and initialize the e-cloud elements
- At end-ring: prepare for global bunch operations
if self.ring_of_CPUs.I_am_at_end_ring:

self.non_parallel_part=\
self.machine.one_turn_map[-n_non_sliceable:]

def init_master(self):
Executed on the “master”, i.e. first core of first ring:
- Initialize the queue with the bunches to be simulated
return list_bunches

def init_start_ring(self):
Executed at each core that is at the start of a ring:
- Prepare bunch monitor
self.bunch_monitor = ...

[...]

PyPARIS multi-bunch: physics description

As for single-bunch parallel
simulations, physics is
described by writing a
simulation class
(description and full
example available in
github)

Each running process has
an instance of the
simulation class

General
self.ring_of_CPUs.N_nodes
self.ring_of_CPUs.myid
self.ring_of_CPUs.I_am_the_master

Specific of multibunch
self.ring_of_CPUs.N_nodes_per_ring
self.ring_of_CPUs.myring
self.ring_of_CPUs.myid_in_ring
self.ring_of_CPUs.I_am_at_start_ring
self.ring_of_CPUs.I_am_at_end_ring

Each core is aware of its role in the
topology through a specific object
“ring_of_CPUs” attached by PyPARIS
to the simulation object.

https://github.com/PyCOMPLETE/PyPARIS/wiki/How-to-define-your-simulation-(multibunch)
https://github.com/PyCOMPLETE/PyPARIS/tree/master/test_multibunch

PyPARIS multi-bunch: physics description

class Simulation(object):
[...]

def perform_bunch_operations_at_start_ring(self, bunch):
Executed at each turn by cores at the start of each
ring:
- Save bunch momenta

def slice_bunch_at_start_ring(self, bunch):
Executed by cores at the start of each ring:
- Pop a bunch and slice it
return list_slices

def treat_piece(self, slice):
Executed by all cores:
- Simulate the interaction of a slice with the
assigned part of the ring

def merge_slices_at_end_ring(self, list_slices):
Executed by cores at the end of each ring:
- Merge the slices back into a single bunch object
return bunch

def perform_bunch_operations_at_end_ring(self, bunch):
Executed by cores at the end of each ring:
- Physics that needs to be performed globally on
the bunch (e.g. lumped longitudinal tracking,
bunch-by-bunch feedback)

As for single-bunch parallel
simulations, physics is
described by writing a
simulation class
(description and full
example available in
github)

Each running process has
an instance of the
simulation class

https://github.com/PyCOMPLETE/PyPARIS/wiki/How-to-define-your-simulation-(multibunch)
https://github.com/PyCOMPLETE/PyPARIS/tree/master/test_multibunch

PyPARIS: behind the scene

PyPARIS has been developed using mpi4py (python wrapper for MPI) to implement the

parallelization:

• It can run without MPI using embedded “dummy MPI communicator”, based on

python multiprocessing (it can be used to run on a single multi-core machine)

Communication features:

• A single array of floats is passed at each iteration

• The PyHEADTAIL particle object is transformed into a buffer of float, which is

transmitted to another process, where it is re-translated back into a particle objects

o Helper functions to perform these operations are available in PyPARIS

• Several buffers (beam slices) can be transferred together (a list can be passed)

• There is no other data going around (apart from stop signal at end-simulation)

o Additional information to manage the simulation is attached as an extra

member (dictionary) to the bunch object. This dictionary is “casted” to a float

array and included in the buffer

PyPARIS: beam generation and slicing

A module has been included in PyPARIS to generate a PyHEADTAIL multibunch beam
with meta-data for usage in e-cloud simulations (PyHEADTAIL slicing under the
hood), could be moved to PyHEADTAIL generators module in the future

from machines_for_testing import SPS
machine = SPS(machine_configuration = 'Q20-injection')

filling_pattern = [1., 1., 0., 1., 1.]
non_linear_long_matching = True

list_bunches = gmb.gen_matched_multibunch_beam(
machine, n_mpart_bunch, filling_pattern,
b_spac_s, bunch_intensity, epsn_x, epsn_y, sigma_z,
non_linear_long_matching, min_inten_slice4EC)

Each bunch slot is made by an integer number of RF buckets

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyPARIS: beam generation and slicing

Empty slots need to be taken into account for the electron dynamics

• Each slot is a PyHEADTAIL Particles object with attached a dictionary with metadata

o This includes flags defining whether the slot needs to be sub-sliced and
whether it interacts with the e-cloud (kicks need to be applied)

{'N_bunches_tot_beam': 5,
'i_bunch': 3,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -22.439,
'z_bin_left': -26.179,
'z_bin_right': -18.699}

bun3.slice_info

{'N_bunches_tot_beam': 5,
'i_bunch': 2,
'i_turn': 0,
'interact_with_EC': False,
'slice_4_EC': False,
'z_bin_center': -14.959,
'z_bin_left': -18.699,
'z_bin_right': -11.219}

bun2.slice_info

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyPARIS: beam generation and slicing

Written a slicing tool that slices bunches (again

PyHEADTAIL’s slicing under the hood) and attaches the

required metadata to each slice object

• Gaps between bunches are covered by long slices at

head and tail that do not interact with the e-cloud

• Info of the parent bunch stored inside each slice

{'N_slices_tot_bunch': 22,
'i_slice': 11,
'interact_with_EC': True,
'z_bin_center': -7.489,
'z_bin_left': -7.499,
'z_bin_right': -7.479,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyPARIS: beam generation and slicing

{'N_slices_tot_bunch': 22,
'i_slice': 0,
'interact_with_EC’: False,
'z_bin_center': -5.509,
'z_bin_left': -7.279,
'z_bin_right': -3.739,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

Written a slicing tool that slices bunches (again

PyHEADTAIL’s slicing under the hood) and attaches the

required metadata to each slice object

• Gaps between bunches are covered by long slices at

head and tail that do not interact with the e-cloud

• Info of the parent bunch stored inside each slice

PyPARIS: beam data saving

Bunch data at each turn are saved by “misusing” a standard PyHEADTAIL bunch
monitor at the entrance of each ring:

• The bunch-id and the turn number are attached to the bunch as additional
methods. The PyHT bunch monitor is instructed to record them.

• Bunches pass one by one through the monitor and the information is logged 1D
arrays

• A separate file is saved by bunch monitor at entrance of each ring of CPUs: if we
have 4 rings, the first file contains turns [0, 4, 8, 12, …], the second file contains
turns [1, 5, 9, 13, …] and so on) Data is reshuffled at the post-processing
stage

def init_start_ring(self):
from PyHEADTAIL.monitors.monitors import BunchMonitor
self.bunch_monitor = BunchMonitor(

'bunch_monitor_ring%03d'%self.ring_of_CPUs.myring,
n_stored_turns, {'Comment':'PyHDTL simulation’},
write_buffer_every=1,
stats_to_store=['mean_x', 'mean_xp’, ..., 'i_bunch', 'i_turn’])

def perform_bunch_operations_at_start_ring(self, bunch):
if bunch.macroparticlenumber>0:

bunch.i_bunch = types.MethodType(
lambda self: self.slice_info['i_bunch'], bunch)

bunch.i_turn = types.MethodType(
lambda self: self.slice_info['i_turn'], bunch)

self.bunch_monitor.dump(bunch)

PyPARIS: data saving

Correct implementation of the parallelization topology checked with a simple
simulation without e-cloud (tracking + ideal feedback)

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

Modifications to PyECLOUD

At each turn PyECLOUD needs to perform a full buildup simulation using
the beam distribution (MacroParticles) received from PyHEADTAIL

Important changes needed

Boundary conditions:
• We want to avoid creating a separate version of PyECLOUD just for these simulations
 very bad for future development and maintenance

• Preserve clean code structure and good readability, avoid duplications
• Changes should be backwards compatible (old buildup and single-bunch instability

simulations should work with no changes)

Strategy:
• Define intermediate milestones, i.e. different needed features
• At each milestone merge changes:

o Validate using PyECLOUD test suite (strengthened at each step)
o Deploy in production version to verify that there was no impact on real

simulation campaign

Changes gradually deployed over four versions: v7.2.0 (April), v7.3.0 (June), v7.4.0 (July),
v7.5.0 (August)

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

PyECLOUD: structure modification

Buildup simulation object

Beam and timing

Field solver (PIC)

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

PyEC4PyHT object

Field solver (PIC)

MP system (no regen)

Dynamics (e- track)

Impact manager

Custom Code
handling beam

slicing and fields

Diagnostics

Kicks to beam
particles

PyECLOUD Version < 7.0.0

Buildup simulations are
performed by a Buildup
simulation object which
includes a set of objects
implementing different parts of
the simulation

Instability simulations are
performed using a PyEC4PyHT
object, built using some of the
buildup modules and custom
python code.

• The electron physics code is
recycled

• Still there is some code
duplication in the
initialization of the objects

 Using this approach for the
coupled-bunch would
significantly increase the
duplication and make further
extensions too heavy…

Usable an a PyHEADTAIL element

Buildup simulation object

Beam and timing

Field solver (PIC)

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 3

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 2

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 1

PyECLOUD Version ≥ 7.0.0

Moreover, as of version 7.0.0
the possibility of simulating the
buildup using multiple species
has been implemented (by
Lotta) by instantiating multiple
cloud objects

• Each cloud has its own sets
of dedicated objects

• At this stage the PyEC4PyHT
class was left unchanged

PyECLOUD: structure modification

PyEC4PyHT object

Field solver (PIC)

MP system (no regen)

Dynamics (e- track)

Impact manager

Custom Code
handling beam

slicing and fields

Diagnostics

Kicks to beam
particles

Usable an a PyHEADTAIL element

Buildup simulation object

Beam and timing

Field solver (PIC)

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 3

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 2

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 1

PyECLOUD Version ≥ 7.0.0

This was the status when the
coupled-bunch development
started

 Decided to change the code
organization

PyECLOUD: structure modification

PyEC4PyHT object

Field solver (PIC)

MP system (no regen)

Dynamics (e- track)

Impact manager

Custom Code
handling beam

slicing and fields

Diagnostics

Kicks to beam
particles

Usable an a PyHEADTAIL element

Buildup simulation object

Beam and timing

Field solver (PIC)

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 3

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 2

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 1

PyEC4PyHT object

Diagnostics

Code handling
beam slicing

Kicks to beam
particles

Buildup simulation object

Beam and timing

Field solver (PIC)

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 3

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 2

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 1

PyEC4PyHT object now includes a full buildup simulation object an not only some of its
parts P

yEC
LO

U
D

V
ersio

n
 ≥ 7

.2
.0

PyECLOUD: structure modification

PyEC4PyHT object

Diagnostics

Code handling
beam slicing

Kicks to beam
particles

Buildup simulation object

Beam and timing

Field solver (PIC)

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 3

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 2

MP system

Dynamics (e- track)

Impact manager

Gas ionization

Photoemission

Data saver

Cloud 1

In this way we do have a full
e-cloud simulation within a
PyEC4PyHT object and we get rid
of all code duplication

Beam and timing object is
different w.r.t. buildup case:
• Same interface exposed to the

buildup simulation object (e.g.
method providing electric
fields at arbitrary position)

• Predefined map (rigid beam)
used for the buildup

• Map coming from PIC of the
beam particles for instability
simulations (PyEC4PyHT)

With this solution electron
simulation far all cases goes
trough the same class
 No duplication at all

P
yEC

LO
U

D
V

ersio
n

 ≥ 7
.2

.0

PyECLOUD: structure modification

PyEC4PyHT object now includes a full buildup simulation object an not only some of its
parts

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

PyECLOUD: saving of buildup simulation results

In a coupled bunch simulation we want to save all the information on the electron dynamics
that we save in a buildup simulation (possibly at each turn)

• PyEC4PyHT module used for single bunch simulations had its own (quite limited) diagnostics
for the electron motion

• Buildup simulation object is equipped with a saver object that monitors and saves on file the
different relevant quantities of the buildup process
o The module needed to know the number of time steps at the beginning of the

simulation (to allocate memory) not appropriate when slice come one by one from
PyHEADTAIL

o The module was assuming uniform time step non convenient as it forces to slice the
beam and sample the gaps with the same time step (see later…)

 Saver module has been restructured to allow dynamic memory allocation and non-uniform
time steps (it was a good occasion for quite some cleanup)

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyECLOUD: cloud simulation logics

No command sent from the master to ecloud objects.

All information travels together with the bunches in

the slice_info dictionary

If the flag interact_with_EC is True:

• PIC on beam particles is performed to evaluate the

beam field

• Beam forces applied to cloud MPs

• Electron forces are applied to beam MPs

{'N_slices_tot_bunch': 22,
'i_slice': 11,
'interact_with_EC': True,
'z_bin_center': -7.489,
'z_bin_left': -7.499,
'z_bin_right': -7.479,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

{'N_slices_tot_bunch': 22,
'i_slice': 0,
'interact_with_EC’: False,
'z_bin_center': -5.509,
'z_bin_left': -7.279,
'z_bin_right': -3.739,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

No command sent from the master to ecloud objects.

All information travels together with the bunches in

the slice_info dictionary

If the flag interact_with_EC is False:

• Beam forces are not computed nor applied

• Electrons are tracked taking into account only

forces from externally applied magnetic fields and

their own space-charge forces

PyECLOUD: cloud simulation logics

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyECLOUD: cloud simulation logics

To work correctly and save buildup data within a
PyHEADTAIL simulation, the buildup module needs to
know (via the beam_and_timing object):

• Time within the turn and current time-step size
• Bunch passage within the turn
• Beam charge line density
• Slice transverse position and r.m.s. size (for primary

electron generation)

These info are prepared by the PyEC4PyHT module based
on the slice_info dictionary attached to the slice and on
the macroparticles in the slice

{'N_slices_tot_bunch': 22,
'i_slice': 11,
'interact_with_EC': True,
'z_bin_center': -7.489,
'z_bin_left': -7.499,
'z_bin_right': -7.479,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

PyECLOUD: time discretization

PyECLOUD
Version < 7.3.0

Buildup simulation:
• Dt: uniform time-step defined by the used
• Substeps used to resolve e- cyclotron motion
• Dtsc larger time step used for electron PIC re-calculation

PyEC4PyHT:
• Time step defined by slicing coming from PyHEADTAIL
• Substeps used to resolve e- cyclotron motion
• Electron PIC re-calculation at each time-step

 For coupled-bunch simulations, the first approach
is too coarse, the second is too heavy…

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

The user still provides two parameters:
• Dt: time-step required to resolve e- dynamics (sub-steps

can still be used for cyclotron motion)
• Dtsc larger time step used for electron PIC re-calculation

only for slices that do not interact with the e-cloud

If the beam slice interacts with the e-cloud:
• The code checks that the slice is shorter than Dt (if not

simulation stops and informs the user)
• Electron dynamics time-step is equal to slice length
• Recalculation of electron field map (PIC) forced for each

slice (Dtsc is ignored)

{'N_slices_tot_bunch': 22,
'i_slice': 11,
'interact_with_EC': True,
'z_bin_center': -7.489,
'z_bin_left': -7.499,
'z_bin_right': -7.479,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

PyECLOUD: time discretization

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyECLOUD: time discretization

a_slice.slice_info

{'N_slices_tot_bunch': 22,
'i_slice': 0,
'interact_with_EC’: False,
'z_bin_center': -5.509,
'z_bin_left': -7.279,
'z_bin_right': -3.739,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

The user still provides two parameters:
• Dt: time-step required to resolve e- dynamics (sub-steps

can still be used for cyclotron motion)
• Dtsc larger time step used for electron PIC re-calculation

only for slices that do not interact with the e-cloud

If the beam slice does not interact with the e-cloud:
• If the slice is longer that Dt , the slice gets divided in

several time steps just smaller than Dt.
• Recalculation of electron field map (PIC) happens every

Dtsc

PyECLOUD: time discretization

To be compatible with the model described before, the cloud simulator needs to
learn how to handle a non uniform time-step

 Implemented and deployed in PyECLOUD v7.3.0

Uniform t-step

Non-uniform t-step

S
lo

t
0

S
lo

t
1

S
lo

t
2

S
lo

t
3

S
lo

t
4

PyECLOUD: reinitialization

{'N_slices_tot_bunch': 22,
'i_slice': 11,
'interact_with_EC': True,
'z_bin_center': -7.489,
'z_bin_left': -7.499,
'z_bin_right': -7.479,
'info_parent_bunch’: {

'N_bunches_tot_beam': 5,
'i_bunch': 1,
'i_turn': 0,
'interact_with_EC': True,
'slice_4_EC': True,
'z_bin_center': -7.479,
'z_bin_left': -11.219,
'z_bin_right': -3.739},}

a_slice.slice_info

At the end of each turn the buildup simulation
needs to be re-initialized:
• Buildups simulation object was not conceived for

that
• Constructing a new object at each turn would be

too heavy

 Needed to introduce in the buildup object the
memory of its initial state and the capability of
reinitializing itself when it sees the first slice of the
first bunch

PyECLOUD: a global view on applied changes

Only modules in which changes

were made are listed here

As of version 7.5.0, PyECLOUD has all the functionalities for the simulation of
coupled-bunch instabilities (changes applied between v7.1.2 and v.7.5.0)

• The new functionalities were added without affecting too much the code size,
in fact it was an occasion for some reorganization and clean-up

• The test suite was significantly strengthened (added ~1000 lines) to validate
new features and stress modules that were modified

Module
Lines

removed(*)

Lines

added(*)

Total lines

v7.5.0

pyecloud_saver.py 337 496 620

PyEC4PyHT.py 172 310 599

PyEC4PyHT_fastion.py 263 0 263

buildup_simulation.py 91 146 226

init.py 13 41 420

MP_system.py 18 35 525

beam_and_timing.py 5 26 383

Total 899 1054 3036
(*) Between v7.1.2 and v7.5.0

Statistics from “git diff --numstats” Functionality
incorporated in

PyECPyHT module
(thanks Lotta!)

PyECLOUD: some checks

Results of simulations with PyHEADTAIL beam (made of macroparticles) are fully
consistent with corresponding standard buildup simulation (rigid analytical beam
distribution)

Response to a transverse beam displacement along the bunch train is clearly
visible in the electron dynamics

PyECLOUD: some checks

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

CERN High Performance Computing (HPC) cluster

• First tests (mainly debugging) conducted on a dedicated node at INFN-CNAF cluster

• Larger studies launched on CERN HPC cluster (managed by IT department)

o Two clusters available for accelerator studies:

 “BE cluster”: ~140 nodes, 20 CPU-cores/node 2800 cores

 “Batch cluster”: ~100 nodes, 16 CPU-cores/node 1600 cores

• Equipped with low-latency network (InfiniBand on BE cluster) for fast communication
among nodes using the MPI protocol

https://cern.service-now.com/service-portal/faq.do?se=High-Performance-Computing

https://cern.service-now.com/service-portal/faq.do?se=High-Performance-Computing

Example of simulation results 1/2

• Simulation scenario: LHC, 450 GeV, 72 bunches, e-cloud in the dipole magnets

• Numerical parameters: 106 macroparticles per proton bunch, 2.5x105 macroparticles
at each e-cloud interaction, 360 CPU cores

• In total 72x106 beam macroparticles and 90x106 electron macroparticles

• Simulation scenario: LHC, 450 GeV, 288 bunches, e-cloud in the dipole magnets

• Numerical parameters: 106 macroparticles per proton bunch, 2.5x105

macroparticles at each e-cloud interaction, 1200 CPU cores

• In total 288x106 beam macroparticles and 300x106 electron macroparticles

Example of simulation results 2/2

Outline

• Introduction

• Parallelization strategy

• Extension of the PyPARIS parallelization layer

o Structure, interface and implementation

o Beam generation and slicing

o Beam data saving

• Modifications to the PyECLOUD code

o Overall structure

o Cloud data saving

o Cloud simulation logics

o Time discretization

• Examples of simulation results

• Simulation time

o Scaling at constant number of bunches

o Effect of hyperthreading

o Scaling with number of bunches

• Summary and next steps

Impact of the parallelization

Simulations performed on the CERN HPC cluster

Step 1:
Parallelization
over segments

Step 2:
Parallelization
over turns

Step 3:
Shorter
bunch slots

All three parallelization steps allow reducing the computation time by using a larger

number of CPU-cores

Test case for scaling studies:
• bunch spacing 20 ns
• 80 bunches,
• 8 EC interactions / turn

Test case for scaling studies:
• bunch spacing 20 ns
• 80 bunches
• 8 EC interactions / turn

Impact of the parallelization

We focus on the last parallelization step:

• Using shorter bunch slots allows using more cores ang gives a visible gain

• Speed-up is significantly less than linear, likely due to asynchronous operations on

the clouds (e.g. regenerations) that keep other cores waiting

Test case for scaling studies:
• bunch spacing 20 ns
• 80 bunches
• 8 EC interactions / turn

Effect of Hyper-Threading

CERN HPC cluster allows the user to decide whether to exploit HyperThreading or not

• Expected loss of performance is observed with HyperThreading ON (using x2 less

physical CPU cores), but performance loss is less than a factor of 2

 Resources of waiting CPU cores can be used by busy ones

For all cases the time
with 1 CPU core is
measured with HT off

Virtual cores in case HT is ON

Test case for scaling studies:
• bunch spacing 20 ns
• 80 bunches,
• 8 EC interactions / turn

Effect of Hyper-Threading

We can plot the data as a function of real CPU cores that are really used

 The two modes of operation are practically equivalent

For all cases the time
with 1 CPU core is
measured with HT off

A good working point for larger simulations:
Slots of 5 ns, HT ON

Real cores

Test case for scaling studies:
• bunch spacing 20 ns
• 80 bunches
• 8 EC interactions / turn

Effect of Hyper-Threading

• To avoid mistakes during development a global synchronization is performed among

all cores at each iteration, not strictly needed

• Interesting to observe that this has absolutely no effect (time of single iterations

changes, but average stays exactly the same)

For all cases the time
with 1 CPU core is
measured with HT off

Real cores

Slots of 5 ns, HT on

Scaling with number of bunches

• When increasing the number of bunches, the number of CPU cores can be increased

accordingly simulation time stays roughly constant

Conclusion and next steps

PyPARIS and PyECLOUD have been updated to simulate coupled-bunch instabilities
driven by electron cloud exploiting MPI parallelization

Next steps (not necessarily in this order):

• Implement diagnostics for intra-bunch motion

• Implement distributed bunch generation

• Introduce non-ideal transverse feedback (if needed)

• Assess possibility of further performance enhancement (collaboration with IT)

• Perform first real studies compare against simplified models

pss = pickle.dumps(sinfo, protocol=2)

Pad to have a multiple of 8 bytes
s1arr = np.frombuffer(pss, dtype='S1’)
ll = len(s1arr)
s1arr_padded = np.concatenate((s1arr, np.zeros(8-ll%8, dtype='S1')))

Cast to array of floats
f8arr = np.frombuffer(s1arr_padded, dtype=np.float64)
sinfo_float_buf = np.concatenate((np.array([ll], dtype=np.float64), f8arr))

How to transfer these dictionaries

PyPARIS – bunch bufferting

