Reinforced jet grooming

Frédéric Dreyer

work in progress with Stefano Carrazza
Boosted objects at the LHC

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with $p_t \gg m$, leading to **collimated decays**.

- Hadronic decay products are thus often **reconstructed into single jets**.

\[p_t \lesssim m \quad \text{and} \quad p_t \gg m \]

2 jets

[Figure by G. Soyez]
Boosted objects at the LHC

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with $p_t \gg m$, leading to **collimated decays**.

- Hadronic decay products are thus often **reconstructed** into single jets.

![Diagram with $p_t \sim m$ and $p_t \gg m$ scenarios]

[Figure by G. Soyez]
Boosted objects at the LHC

- Many techniques developed to identify **hard structure** of a jet based on radiation patterns.

- In principle, simplest way to identify these boosted objects is by looking at the **mass of the jet**.
Boosted objects at the LHC

▶ Many techniques developed to identify hard structure of a jet based on radiation patterns.

▶ In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.

▶ But jet mass distribution is highly distorted by QCD radiation and pileup.
Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).

- Recurse through clustering tree and remove soft branch if
 \[
 \frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} > \frac{z_{\text{cut}}}{R_0} \left(\frac{\Delta R_{12}}{R_0} \right)^\beta
 \]

Graph showing the distribution of di-mass in the context of W jet production.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).

Recurse through clustering tree and remove soft branch if

\[
\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0} \right)^\beta
\]
Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

\[
\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0} \right) ^\beta
\]

Aim of this talk: Introduce a framework based on reinforcement learning to approach the problem of jet grooming.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
Grooming a jet tree

- Cast jet as clustering tree where state of each node $\mathcal{T}^{(i)}$ is a tuple with kinematic information on splitting

$$s_t = \{z, \Delta_{ab}, \psi, m, k_t\}$$

- Grooming algorithm defined as a function π_g observing a state and returning an action $\{0, 1\}$ on the removal of the softer branch, e.g.

$$\pi_{\text{RSD}}(s_t) = \begin{cases}
0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0} \right)^\beta \\
1 & \text{else}
\end{cases}$$
Reinforcement learning are usually built from two elements:

▶ an agent deciding which actions to take in order to maximize reward
▶ an environment, observed by the agent and affected by the action

Deep Q-Network is a RL algorithm which uses a table of Q-values $Q(s, a)$, determining the next action as the one that maximizes Q.

A neural network is used to approximate the optimal action-value function

$$Q^*(s, a) = \max_{\pi} E[r_t + \gamma r_{t+1} + \ldots | s_t = s, a_t = a, \pi]$$

[Mnih et al, Nature 2015]
Defining a grooming environment

To find optimal grooming policy π_g, define an environment and a reward function so that problem can be solved with RL.

- Initialize list of all trees used for training.
- Each episode starts by randomly selecting a tree and adding its root to a priority queue (ordered in Δ_{ab}).
- Each step removes first node from priority queue, then takes action on removal of soft branch based on state s_t of node.
- After action, update kinematics of parent nodes, add current children to priority queue, and evaluate reward function.
- Episode terminates once priority queue is empty.
Scanning hyperparameters

To determine optimal choice of hyper-parameters of the model architecture and grooming agent, we use distributed asynchronous hyperparameter optimization library hyperopt.

- Performance of an agent is defined from loss function evaluated on validation sample of 50k signal (W) and background (QCD) jets.
- Derive groomed jet mass distribution from validation data and determine window ($w_{\text{min}}, w_{\text{max}}$) containing 60% of signal distribution, with w_{med} the median in that interval.
- Define f_{bkg} the fraction of groomed background sample contained in the same window.
- Loss function is given by

$$
\mathcal{L} = \frac{1}{5} |w_{\text{max}} - w_{\text{min}}| + |m_{\text{target}} - w_{\text{med}}| + 20 f_{\text{bkg}}
$$
Defining the reward function

- Key ingredient for optimization of grooming policy is reward function used at each training step.
- We construct a reward with two components
 - First piece R_M evaluated on the full jet tree, comparing the jet mass to a target value.
 - Second component R_{SD} looks at kinematics of current node.
- Total reward is then given by

$$R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{SD}} R_{SD}(a_t, \Delta, z)$$

- Where mass reward is defined using a Cauchy distribution

$$R_M(m) = \frac{\Gamma^2}{\pi(|m - m_{\text{target}}|^2 + \Gamma^2)}$$
Defining the reward function

- To provide baseline behaviour for the groomer, we include a “Soft-Drop” reward R_{SD} evaluated on the current node.
- Calculated on the current node state, gives positive reward for removal of wide-angle soft radiation and for keeping hard-collinear emissions.

$$R_{SD}(a_t, \Delta, z) = a_t \min \left(1, e^{-\alpha_1 \ln(1/\Delta) + \beta_1 \ln(z_1/z)} \right)$$

$$+ (1 - a_t) \max \left(0, 1 - e^{-\alpha_2 \ln(1/\Delta) + \beta_2 \ln(z_2/z)} \right)$$

Frédéric Dreyer
Implementation and multi-level training

- Train RL agent with multi-level approach using both signal and bkg into account. Sample consists of 500k W/QCD Pythia 8 jets.
- At the beginning of each episode, randomly select a signal or background jet.
- In the background case, mass reward function is changed to

$$R^\text{bkg}_M(m) = \frac{|m - m_{\text{target}}|^2 \Gamma_{\text{bkg}}^2}{\pi(|m - m_{\text{target}}|^2 + \Gamma_{\text{bkg}}^2)} \Theta(m_{\text{target}} - m)$$
To test the grooming algorithm derived from the DQN agent, we apply our groomer to three test samples: QCD, W, and Top jets.

- Small improvement in jet mass resolution compared to RSD.
- Algorithm performs very well on data beyond its training range such as the top sample.
Lund jet plane density

- Visualize radiation patterns after grooming with Lund jet plane, defined as $(\ln 1/\Delta_{ab}, \ln k_t)$ of “primary” declustering sequence.
- Soft and wide-angle radiation is removed by the groomer.
Conclusions

▶ Promising application of RL to the issue of jet grooming.
▶ Carefully designed reward function can be used to construct a groomer from NN trained with DQN agent.
▶ Groomer can be applied with good performance to wide range of data.
▶ Due to its simplicity, the algorithm should retain some of the calculability of existings methods such as Soft Drop.
▶ Framework is generic and can easily be extended to higher-dimensional inputs or to other problems.