

Trident

Automated system tool for collecting and analyzing hardware performance counters

Servesh Muralidharan & David Smith

IT-DI-WLCG, UP Team

CERN

Dec 2018

Introduction

- Existing tools
 - Execution and profiling are separate steps
 - Focus more on HPC Applications
 - □ Fine grained analysis
 - Architecture specific optimizations
- Typical HEP Applications (As it is today!!!)
 - A cluster of several hundred algorithms
 - Complex framework interconnecting these algorithms
 - ☐ Linear instruction spread (no hotspots)
 - Non existence of classical numerical loops
 - Average runtime of several hours

- Proposed Solution: Trident
 - Continuous performance analysis
 - □ System perspective
 - Node level measurements
 - Non-virtualized environment
 - Low overhead and lightweight
 - Utilizes hardware counters to measureCore, Memory and IO metrics
 - Presents it in a HEP-human readable form

Trident Architecture

- Detects the events supported by the node
- Extensible event files for future architectures
- Configures metrics based on these events
- □ These metrics are sampled at preconfigured rate
- □ Stored temporarily in local disk
- Plugins perform transformations to the data
- □ Simple low overhead online analysis
- Data exported to centralized storage for offline analysis

Trident - Core Performance Analysis

- Instruction Per Cycle (IPC)
 - Denotes ratio of parallel instructions executed
 - Modern processors like Intel Haswell EP can do 4 IPC
- Top down characterization
 - Identifies the resources dominated by workload
 - ☐ Front-End fetch and decode program code
 - Back-End monitor and execution of uOP once the dependent data operands availability
 - Retiring Completion of the uOP
 - Bad speculation uOPs that are cancelled before retirement due to branch misprediction
- Execution Unit Port Utilization
 - Determines how many cycles the port was busy
 - Identifies broadly the pressure from different types of uOPs
 - □ INT & FP operations, address calculation, etc.,

Category	Expected Range of Pipeline Slots in This Category, for a Hotspot in a Well-Tuned:		
	Client/Desktop Application	Server/Database/Distributed application	High Performance Computing (HPC) application
Retiring	20-50%	10-30%	30-70%
Back-End Bound	20-40%	20-60%	20-40%
Front-End Bound	5-10%	10-25%	5-10%
Bad Speculation		5-10% ce: https://software.intel.com/en	

Trident - Memory Performance Analysis

- Memory bandwidth usage
 - Amount of data read and written to main memory
- Memory transaction classification
 - Memory transaction occurs through pages from memory bank
 - Page-Hit
 - Memory bank in open state
 - □ Lowest access latency (Open)
 - Sequential memory access usually have high page hits
 - Page-Empty
 - Memory bank is idle and needs to be activated
 - Moderate access latency (Usually 2x of page hit)
 - □ Random memory access usually have high page empty counts
 - Page-Miss
 - Memory to be accessed requires closing of a page in the same bank
 - Worst access latency (Usually 3x of page hit)

Trident - IO Performance Analysis

- Data recorded form ProcFS
- Transfer Rate Analysis
 - Amount of data read and written to storage
 - Limited by interface and type of memory
 - Sustained Vs Bursts
- Operation Rate Analysis
 - Amount of operations performed
 - Limited by controller for fast memory
 - Limited by disk head for HDDs
 - Random Vs Sequential accesses

Experiment setup

- □ Test System: 2x Intel(R) Xeon(R) E5-2630 v3@2.40GHz / 64GB DDR4-2133 RAM / Centos 7 (3.10.0-862.el7.x86_64)
- Workloads
 - □ HEPSPEC06 Benchmark Suite
 - 450.soplex,471.omnetpp,447.dealll,473.astar,444.namd,453.povray,483.xalancbmk
 - ATLAS Job 1 Geant4 MC simulation (CPU Intensive)
 - Executes: Sim_tf (Geant4)
 - Input: EVNT files from event generation / Output: HITS files
 - ATLAS Job 2 MC digitization and reco (CPU+I/O intensive)
 - Executes: Reco_tf with several sub-steps
 - ☐ HITtoRDO (Digitization)
 - □ RDOtoRDOTrigger (Trigger simulation)
 - □ RAWtoESD + ESDtoAOD (MC reconstruction)
 - □ POOLMergeAthenaMPAOD0 (merge some small outputs)
 - □ Input: HITS files from MC simulation + low and high pile-up HITS for digitization / Output: AOD files
 - ATLAS Job 3 Derivation production (I/O Intensive)
 - Executes: Reco_tf in AODtoDAOD mode
 - AODtoDAOD
 - □ DAODs are used as the basis of ~all physics analysis in ATLAS
 - DAODs produced from AOD by removing whole events (skimming), whole reconstructed objects (thinning) and variables (slimming)
 - ☐ Input: AOD / Output: multiple DAODs in a train

8

M

Experiment setup

- □ Test System: 2x Intel(R) Xeon(R) E5-2630 v3@2.40GHz / 64GB DDR4-2133 RAM / Centos 7 (3.10.0-862.el7.x86_64)
- Workloads
 - ☐ HEPSPEC06 Docker Container Cloud Benchmark Suite (Thanks Domenico Giordano!!!)
 - 450.soplex,471.omnetpp,447.dealll,473.astar,444.namd,453.povray,483.xalancbmk
 - ☐ ATLAS Job 1 Geant4 MC simulation (CPU Intensive)
 - Executes: Sim_tf (Geant4)
 - Input: EVNT files from event generation / Output: HITS files
 - ATLAS Job 2 MC digitization and reco (CPU+I/O intensive)
 - Executes: Reco_tf with several sub-steps
 - → HITtoRDO (Digitization)
 - □ RDOtoRDOTrigger (Trigger simulation)
 - □ RAWtoESD + ESDtoAOD (MC reconstruction)
 - □ POOLMergeAthenaMPAOD0 (merge some small outputs)
 - □ Input: HITS files from MC simulation + low and high pile-up HITS for digitization / Output: AOD files
 - ATLAS Job 3 Derivation production (I/O Intensive)
 - Executes: Reco_tf in AODtoDAOD mode
 - AODtoDAOD
 - □ DAODs are used as the basis of ~all physics analysis in ATLAS
 - DAODs produced from AOD by removing whole events (skimming), whole reconstructed objects (thinning) and variables (slimming).
 - ☐ Input: AOD / Output: multiple DAODs in a train

Geant4

Geant4

Geant4

Experiment setup

- Test System: 2x Intel(R) Xeon(R) E5-2630 v3@2.40GHz / 64GB DDR4-2133 RAM / Centos 7 (3.10.0-862.el7.x86_64)
- Workloads
 - ☐ HEPSPEC06 Docker Container Cloud Benchmark Suite (Thanks Domenico Giordano!!!)
 - 450.soplex,471.omnetpp,447.dealII,473.astar,444.namd,453.povray,483.xalancbmk
 - ATLAS Job 1 Geant4 MC simulation (CPU Intensive)
 - Executes: Sim tf (Geant4)
 - ☐ Input: EVNT files from event generation / Output: HITS files
 - □ ATLAS Job 2 MC digitization and reco (CPU+I/O intensive)
 - Executes: Reco_tf with several sub-steps
 - HITtoRDO (Digitization)
 - □ RDOtoRDOTrigger (Trigger simulation)
 - RAWtoESD + ESDtoAOD (MC reconstruction)
 - □ POOLMergeAthenaMPAOD0 (merge some small outputs)
 - □ Input: HITS files from MC simulation + low and high pile-up HITS for digitization / Output: AOD files
 - ATLAS Job 3 Derivation production (I/O Intensive)
 - Executes: Reco_tf in AODtoDAOD mode
 - AODtoDAOD
 - □ DAODs are used as the basis of ~all physics analysis in ATLAS
 - DAODs produced from AOD by removing whole events (skimming), whole reconstructed objects (thinning) and variables (slimming)
 - ☐ Input: AOD / Output: multiple DAODs in a train

Experiment setup

- □ Test System: 2x Intel(R) Xeon(R) E5-2630 v3@2.40GHz / 64GB DDR4-2133 RAM / Centos 7 (3.10.0-862.el7.x86_64)
- Workloads
 - ☐ HEPSPEC06 Docker Container Cloud Benchmark Suite (Thanks Domenico Giordano!!!)
 - 450.soplex,471.omnetpp,447.dealII,473.astar,444.namd,453.povray,483.xalancbmk
 - ATLAS Job 1 Geant4 MC simulation (CPU Intensive)
 - Executes: Sim_tf (Geant4)
 - Input: EVNT files from event generation / Output: HITS files
 - ATLAS Job 2 MC digitization and reco (CPU+I/O intensive)
 - Executes: Reco_tf with several sub-steps
 - → HITtoRDO (Digitization)
 - □ RDOtoRDOTrigger (Trigger simulation)
 - □ RAWtoESD + ESDtoAOD (MC reconstruction)
 - □ POOLMergeAthenaMPAOD0 (merge some small outputs)
 - □ Input: HITS files from MC simulation + low and high pile-up HITS for digitization / Output: AOD files
 - ☐ ATLAS Job 3 Derivation production (I/O Intensive)
 - Executes: Reco_tf in AODtoDAOD mode
 - AODtoDAOD
 - DAODs are used as the basis of ~all physics analysis in ATLAS
 - DAODs produced from AOD by removing whole events (skimming), whole reconstructed objects (thinning) and variables (slimming)
 - ☐ Input: AOD / Output: multiple DAODs in a train

