CAP Congress 2019

Cosmological Bounds on Non-Abelian Dark Forces

PRD95, 015032, arXiv:1605.08048
PRD97, 075029, arXiv:1710.06447

TRIUMF & UBC
Collaboration with David Morrissey & Kris Sigurdson

Lindsay Forestell
Outline

1. Motivations
2. Dark Glueballs
3. Cosmological Constraints
Standard Model(s)

\[SU(3)_c \times SU(2)_L \times U(1)_Y \]
Standard Model(s)

\[SU(3)_c \times SU(2)_L \times U(1)_Y \]

\[+ \Lambda \times (C)DM \times SM \]
Standard Model(s)

\[SU(3)_c \times SU(2)_L \times U(1)_Y \]

+
\[\Lambda \times (C)DM \times SM \]

+
BSM ???

Missing pieces:

- How does gravity connect with the SM?
- What is dark matter?
- Baryogenesis
- Hierarchy problem
- Strong CP Violation
- ...
BSM in Standard Searches?

THEORY vs DATA

BSM PHYSICS

electron channel, and 1.99 TeV in the dimuon channel consistent with the Standard Model prediction. The choice of different models, the data are interpreted...

ATLAS, arXiv: 1707.02424

Lindsay Forestell
Move to a bigger lab?

Use cosmology and astrophysics to provide limits from the highest energies and earliest epochs in the Universe.

Lindsay Forestell
Dark Forces

- Minimal or non-existent connections with the SM
- Evade current LHC limits
- Evade current direct detection limits
- What can we ask about it?
- **How do we constrain it?**
Focus on dark gauge SU(3)

Evolution of the coupling with energy leads to confinement.

At low energies, gluons confine into glueballs.

\[\mathcal{L}_{\text{eff}} = -\frac{1}{16\pi \alpha(x(\mu))} X_{\mu \nu}^a X^{a\mu \nu} \]
Focus on dark gauge SU(3)

Evolution of the coupling with energy leads to confinement.

At low energies, gluons confine into glueballs.
Glueball Spectrum

- Come from lattice calculations
- Classified according to J^{PC}
- Similar for larger N
- No c-odd states for SU(2)!
- Lightest is generically 0^{++}, $m \sim 7\Lambda_x$
Although we compute abundances with a large spectrum of glueballs, find only two states matter:

- 0^{++}: most abundant. Has a unique $3 \text{ to } 2$ interaction that sets the relic yield.
- 1^{+-}: may have important cosmological consequences if stable.

Can be interesting if stable.
Ruled out by dark matter yield.

Allowed.
Standard Model – Glueball Interactions

\[\mathcal{O}^{(6)} \sim \frac{1}{M^2} H^\dagger H \text{tr}(X X) \]

\[\mathcal{O}^{(8a)} \sim \frac{1}{M^4} \text{tr}(F_{SM} F_{SM}) \text{tr}(X X) \]

\[\mathcal{O}^{(8b)} \sim \frac{1}{M^4} B_{\mu\nu} \text{tr}(X X X)^{\mu\nu} \]

- Non-renormalizable interactions with the SM are possible.
- Integrate out massive fermions charged under both SM and dark gauge groups.
- Couple a darkly charged scalar mediator through a Higgs portal.
Standard Model – Glueball Interactions

\[\mathcal{O}^{(6)} \sim \frac{1}{M^2} H^\dagger H \text{tr}(XX) \]

\[\Gamma_6 \sim \frac{m_0^5}{M^4} \]

\[\mathcal{O}^{(8a)} \sim \frac{1}{M^4} \text{tr}(F_{SM} F_{SM}) \text{tr}(XX) \]

\[\Gamma_8 \sim \frac{m_0^9}{M^8} \]

\[\mathcal{O}^{(8b)} \sim \frac{1}{M^4} B_{\mu \nu} \text{tr}(XXX)^{\mu \nu} \]

Only the 0++ can decay through dimension 6.

Dimension 6 decays are parametrically earlier than dimension 8.

If \(C_x \) is a good symmetry, then the 1+- will be stable.

Violates C in the dark sector

\[\text{tr}(XXX) \rightarrow 1^{+-} \]

\[\text{tr}(XX) \rightarrow 0^{++} \]
Explicit Decay Scenarios

1. Dimension-8 decays with broken C_x
 All glueballs decay with parametrically similar rates.

2. Dimension-8 decays with exact C_x
 1^{+-} is stable.

3. Dimension-6 decays with broken C_x
 Glueballs decay through the dimension-6 operator except for the C-odd 1^{+-} state, making it longer lived.

4. Dimension-6 decays with exact C_x
 1^{+-} is stable.
Cosmological Constraints

- As glueballs can decay over many different lifetimes, many various epochs of the Universe can be used to place constraints.

Big Bang? → BBN: ~MeV (3 min.) Light elements form → Recombination: ~eV (380,000 years) CMB forms → Today: ~14 Gyr
Dimension 8, Broken C_x

$1^+\text{ entirely subdominant to } 0^{++}$.

Inconsistent with model assumptions.

$R = R_{\text{min}}$

$R = R_{\text{max}}$

1$^+$ makes up all the DM.

Inconsistent with model assumptions.

Ruled out.
Dimension 8, Exact C_x (stable 1^{+-})

$R = R_{\text{min}}$

$R = R_{\text{max}}$

1^{+-} makes up all the DM

0^{+} makes up all the DM

Logarithmic scale for m_0 (GeV) and M (GeV)

Forestell, Morrissey, Sigurdson, 2018

Lindsay Forestell
Dimension 6, Broken C_x

1\(^{++}\) degeneracy lifted.

$R = R_{\text{min}}$

$R = R_{\text{max}}$

Forestell, Morrissey, Sigurdson, 2018
Dimension 6, Exact C_x (stable 1^{+-})

$R = R_{\text{min}}$

$R = R_{\text{max}}$

1^{+-} makes up all the DM

Forestell, Morrissey, Sigurdson, 2018
Summary

• Now is a good time to explore new dark gauge forces.

• Rich dynamics in the non-Abelian sector.

• Considered a spectrum of massive glueballs.

• Complicated freeze-out dynamics including a 3→2 cannibalism phase.

• Constrain the gauge based on lifetimes, using various cosmological laboratories.

• Constraints are placed on m, M, R.
Thank You!
Backup Slides...
Dark Forces

- What type of force?
 Abelian – Dark U(1)
 Non-abelian – SU(N), SP(2N), SO(N), etc…

- What mass scale is involved?
 Confinement into massive particles
 Sets relevant energy scales

- Does it connect with the SM?
 Weak connections via particles charged under various light/dark gauge groups.

- Is it stable?
 Dark matter!

- HOW do we constrain it?
From Gluons to Glueballs..

\[\mathcal{L}_{\text{eff}} = -\frac{1}{16\pi\alpha_x(\mu)} X^a_{\mu\nu} X^{a\mu\nu} \]

\[\frac{1}{N} X_{\mu\nu} X^{\mu\nu} \rightarrow \text{finite} \]

\[\frac{1}{N} X_{\mu\nu} X^{\mu\nu} \rightarrow F(\phi, \partial_\mu, m_x) \]

Large N Scaling

NDA
From Gluons to Glueballs..

\[\mathcal{L}_{\text{eff}} = -\frac{1}{16\pi\alpha_x(\mu)} X^a_{\mu\nu} X^{a\mu\nu} \]

Identify \(m \) with the mass of the lightest scalar field

\[\mathcal{L}_{\text{eff}} = \frac{1}{2} (\partial\phi)^2 - \frac{1}{2} m^2 \phi^2 - m^4 \sum_{n \geq 3} \frac{a_n}{n!} \left(\frac{4\pi}{N} \right)^{n-2} \left(\frac{\phi}{m} \right)^n \]

Expand function to include all possible interactions
Self-interactions for glueballs today imply that $m > 100$ MeV.

Without SM interactions, only way to change the number of 0^{++} glueballs.
Glueball Cosmology

Start simple: single glueball state.

Yield is set by the 3 to 2 interactions.

\[\dot{n} + 3Hn = -\langle \sigma v^2 \rangle_{32}(n^3 - n^2 \bar{n}) \]

Hubble expansion

3 \rightarrow 2 dilution

\[\bar{n}_x = g_x \left(\frac{m_x T_x}{2\pi} \right)^{3/2} e^{-m_x/T_x} \]
Glueball Cosmology

Start simple: single glueball state.

Yield is set by the 3 to 2 interactions.

\[\dot{n} + 3Hn = -\langle \sigma v^2 \rangle_{32}(n^3 - n^2\bar{n}) \]

Hubble expansion

3 → 2 dilution

\[H^2 = \frac{1}{3M_{PL}^2} \rho = g_* \frac{\pi^2}{90} \frac{1}{M_{PL}^2} T^4 \]

\[\bar{n}_x = g_x \left(\frac{m_x T_x}{2\pi} \right)^{3/2} e^{-m_x/T_x} \]
Assumptions

- Dark sector is thermally decoupled
- Inflation (or something like it) and reheating occurred
 Heats the two sectors independently: $T > T_x > m$
- Glueballs self-thermalize
- Both sectors evolve adiabatically
 Use variable, R, as a parameter in the model
- This gives us enough information to solve for the dynamical evolution
 Can determine $T_x(T)$

Entropy Conservation:

\[R = \frac{s_x(T_x)}{s(T)} = \text{constant} \]

\[T_x s_x = \rho_x + P_x - \mu_x n_x \]
Multiple Glueball Interactions

Allow any interactions that conserve good symmetries: J^{PC}

Limit to 2 to 2 interactions (3 to 2 only affects lightest state considerably).

C conservation implies many C-odd/even interactions will not be allowed

P conservation implies that many more interactions will be velocity suppressed for non-relativistic particles

$$\langle \sigma v \rangle_{ijkl} \sim \frac{(4\pi)^3}{N^4} \frac{\beta_{ijkl}}{s_{ij}} c_L \left(\frac{2}{x_i + x_j} \right)^L$$

Couplings Kinematics Velocity Suppression

$$i + j \rightarrow k + l$$

$$C_i C_j = C_k C_l$$

$$P_i P_j = (-1)^L P_k P_l$$
Temperature Evolution

When 3 to 2 interactions turn off, resumes cooling as normal.

Dark temperature cools slower due to 3 to 2 cannibalism.
Adding More Glueballs: C-Even

\[\dot{n}_1 + 3Hn_1 = -\langle \sigma_3 v^2 \rangle n_1^2 (n_1 - \bar{n}_1) \]
\[-\frac{1}{2} \langle \sigma v \rangle_{2111} \left[\frac{n_2}{n_1} n_1 n_2 - n_2^2 \right] \]
\[-\langle \sigma v \rangle_{2211} \left[\frac{n_2^2}{n_1} n_1^2 - n_2^2 \right] \]
\[-\frac{1}{2} \langle \sigma v \rangle_{2214} \left[\frac{n_2}{n_1 n_4} n_4 n_2 - n_2 n_4 \right] \]
\[\dot{n}_2 + 3Hn_2 = +\frac{1}{2} \langle \sigma v \rangle_{2111} \left[\frac{n_2}{n_1} n_1 n_2 - n_2^2 \right] \]
\[+\langle \sigma v \rangle_{2211} \left[\frac{n_2^2}{n_1} n_1^2 - n_2^2 \right] \]
\[+\langle \sigma v \rangle_{2214} \left[\frac{n_2}{n_1 n_4} n_4 n_2 - n_2 n_4 \right] \]
\[+\frac{1}{2} \langle \sigma v \rangle_{2415} \left[\frac{n_2 n_4}{n_1 n_5} n_5 n_2 - n_2 n_4 \right] \]
\[-\frac{1}{2} \langle \sigma v \rangle_{1512} \left[\frac{n_1 n_5}{n_1 n_2} n_2 n_1 - n_1 n_5 \right] \]
\[\dot{n}_4 + 3Hn_4 = -\frac{1}{2} \langle \sigma v \rangle_{2214} \left[\frac{n_2}{n_1 n_4} n_4 n_2 - n_2^2 \right] \]
\[+\frac{1}{2} \langle \sigma v \rangle_{2415} \left[\frac{n_2 n_4}{n_1 n_5} n_5 n_2 - n_2 n_4 \right] \]
\[\dot{n}_5 + 3Hn_5 = -\frac{1}{2} \langle \sigma v \rangle_{2415} \left[\frac{n_2 n_5}{n_1 n_5} n_5 n_2 - n_2 n_5 \right] \]
\[+\frac{1}{2} \langle \sigma v \rangle_{1512} \left[\frac{n_1 n_5}{n_1 n_2} n_2 n_1 - n_1 n_5 \right] \]

3→2

Coannihilations

- Can model independently of the c-odd states.
- Get a host of different freeze-out processes at play.

Smaller number changing processes

Lindsay Forestell
0++ dominates, and is largely unaffected by underlying states. (Relic density entirely set by 3 \rightarrow 2 process).

2++ depletes more efficiently relative to others due to coannihilation effects.