2-7 June 2019
Simon Fraser University
America/Vancouver timezone
Welcome to the 2019 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2019 !

51 - Precision characterization of the linear-zigzag transition in ultracold trapped ion crystals

4 Jun 2019, 17:17
2m
SWH 9082 + AQ South-East Corner / coin sud-est (Simon Fraser University)

SWH 9082 + AQ South-East Corner / coin sud-est

Simon Fraser University

Poster Competition (Graduate Student) / Compétition affiches (Étudiant(e) 2e ou 3e cycle) Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) DAMOPC Poster Session & Student Poster Competition Finals (26) | Session d'affiches DPAMPC et finales du concours d'affiches étudiantes (26)

Speaker

Mr Brendin T Chow (Department of Physics, Simon Fraser University)

Description

In a linear Paul ion-trap, the structural transition from a 1-D linear chain of ions to a 2-D zigzag structure, known as the linear-zigzag transition, is a well-known behavior for crystals of laser cooled, trapped ions. Here we present the first studies of the linear-zigzag transition at ultracold temperatures following cooling to near the ground-state of motion. We characterize the transition using Raman sideband spectroscopy , revealing the shape of the effective potential near the critical point and thereby the nature of the transition. In an ideal linear Paul trap, the linear-zigzag transition is associated with the onset of a symmetric double-well potential that is indicative of its continuous nature . Experimentally in our setup, we observe a bias in the double-well potential near the critical point; we attribute this to small asymmetries in the ion trap . We also observe a shift in the critical point of approximately 0.5% from the value predicted in the pseudopotential approximation for the ion trap , consistent with the effect of micromotion on the ions in the radio-frequency trap. At a technical level, our spectroscopic measurements of the linear-zigzag transition are enabled by a high level of long-term trap stability over the duration of data acquisition. This work sets the stage for measurements of coherent effects near the critical point.

Primary author

Mr Brendin T Chow (Department of Physics, Simon Fraser University)

Co-authors

Mr Mahdi Qaryan (Department of Physics, Simon Fraser University) Mr Jie Zhang (Interdisciplinary Center of Quantum Information, National University of Defense Technology) Dr Paul C Haljan (Department of Physics, Simon Fraser University)

Presentation Materials