University of Manitoba

The $5 s \rightarrow 6 s$ Stark shift measured via two-photon spectroscopy in laser-trapped rubidium

M. J. Kossin ${ }^{* 1}$, J. A. Behr², G. Gwinner ${ }^{1}$, A. Gorelov², M. R. Kalita², L. A. Orozco³, M. R. Pearson ${ }^{2}$
${ }^{1}$ U. of Manitoba, ${ }^{2}$ TRIUMF, ${ }^{3}$ University of Maryland, ${ }^{*}$ mkossin@triumf.ca

Introduction

We have measured the Stark shift of the $5 \mathrm{~s} \rightarrow 6 \mathrm{~s}$ transition in ${ }^{87} \mathrm{Rb}$ using two-photon spectroscopy. Atoms are held in a magneto-optical trap (MOT) at the center of two optically-transparent electric field plates providing unhindered optical access for the MOT beams. The Stark shift was determined for electric fields from $0.350 \mathrm{kV} / \mathrm{cm}$ to $5.249 \mathrm{kV} / \mathrm{cm}$. The 993 nm spectroscopy laser was referenced with a Pound-Drever-Hall frequency offset lock to a ULE cavity with a frequency stability better than $200 \mathrm{kHz} /$ day. Although we are still evaluating systematic error, we so far find that our results are consistent with predictions from literature of the differential polarizability of this transition[1].

The two-photon transition in ${ }^{87} \mathbf{R b}$

Fig. 1: The two-photon excitation (solid arrows) of ${ }^{87} \mathrm{Rb}$ driven by the 993 nm laser, and the subsequent single-photon emissions (dashed arrows) from these atoms. photomultiplier detects atoms decaying from the $5^{2} p_{1 / 2}$ state to the $5^{2} s_{1 / 2}$ state.

Fig. 2: A MOT is created between transparent electric field plates while a Pound-DreverHall setup locks and shifts the frequency of a 993 nm laser driving a two-photon $5 \mathrm{~s} \rightarrow 6 \mathrm{~s}$ transition[2]. An electro-optic modulator shifts the frequency of the beam entering the temperature-controlled ultra-low-emission locking cavity, and the laser's frequency is subsequently adjusted in the opposite direction using its piezo-controlled mirror so that the wavelength of the portion of the beam entering the modulation EOM stays the same.

Experimental Procedure

${ }^{87} \mathrm{Rb}$ is dispensed into magneto optical trap
Trap is maintained between electric field plates (Fig. 2)
2. 993 nm laser drives transition (Fig. 1) as wavelength is scanned

Frequency first scans upward, than downward

- Laser intensity: ~3 W/mm

Photons counted using PMT, correlated with wavelength (Fig. 3) Measurement is repeated for several different electric fields

Example: 1.05 kV/cm Downward Scan

Fig. 3: Photon counts taken as the 993 nm laser frequency is shifted downward in steps of 0.375 kHz from atoms exposed to an electric field of $1.05 \mathrm{kV} / \mathrm{cm}$. A Lorentzian of 0.375 kHz from atoms exposed to an electric field of $1.05 \mathrm{kV} / \mathrm{cm}$. A Lorentzian Uctormine the center of the resonance peak This measurement is repeated as the determine the center of the resonance peak. This measurement is repeated as the

Data Analysis

- For each frequency sweep, a Lorentzian is fit to a counts/frequency plot (Fig. 3)
- The centroids of these fits are plotted against the square of the electric field applied to the atoms (Fig. 4)

Separate plots are made for scans that moved the laser frequency from low to high (upward scans), and those in which the frequency went from high to low (downward scans) - Reduced χ^{2} of the linear fit of frequency shifts with respect to square of E-field is constrained to 1 by multiplying errors by constant amount, with error bars shown in Fig. 5 as solid lines.

The slope of these lines gives us the Stark shift, which is within one sigma of the theoretical determination of the this transition's differential polarizability by Safronova et. al. We modelled the electric fields inside our science chamber and found significant dependence on the MOT's position along the axis normal to the field plates. We assume an uncertainty in the MOT's position of 3 mm and show the resulting uncertainty in the Stark shift as dashed lines in Fig. 5. Future work shall include further evaluation of possible systematic errors

Resonance Frequency Shifts
(Upward Scans)
(Downward Scans)

Fig. 4: Frequency centroids, relative to some arbitrary value, of Lorentzian fits to photon counts taken during frequency scans made as ${ }^{87} \mathrm{Rb}$ atoms are exposed to electric fields from $0.350 \mathrm{kV} / \mathrm{cm}$ to $5.249 \mathrm{kV} / \mathrm{cm}$, plotted with respect to the squares of those fields. The Stark shift is determined by the slope of these lines: $-0.608+/ 0.0040 \mathrm{MHz} /(\mathrm{kV} / \mathrm{cm})^{2}$
for the upward scans and $0.602+\left(0.0055 \mathrm{~Hz} /(\mathrm{kV} / \mathrm{cm})^{2}\right.$ for the downward scans.

Fig. 5: The predicted differential polarizability of the transition $\left(0.6039 \mathrm{MHz} /(\mathrm{kV} / \mathrm{cm})^{2}\right)$ compared to the polarizability determined from the Stark shift that we measured $\left(0.6055 ~ \% / .0 .0034 \mathrm{MHz} /(\mathrm{kV} / \mathrm{cm})^{2}\right)$. The dashed portion of the error bar shows the error field plas af 3 mm in encertarty in the extending the error bars down to 0.00658 and up to 0.00667 .

References

[1] M. S. Safronova, W. R. Johnson, and A. Derevianko. "Relativistic Many-Body Calculations of Energy Levels, Hyperfine Constants, Electric-Dipole Matrix Elements, and Static Polarizabilities for Alkali-Metal Atoms". Phys. Rev. A, 60:4476-4487, Dec 1999 [2] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward. "Laser Phase and Frequency Stabilization Using an Optical Resonator". Applied Physics B. 31(2): 97-105.

Acknowledgements

Operational funding for the FrPNC experiments is provided by NSERC (Canada) and NSF (USA). TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. DOE (USA) has provided infrastructure support for establishing the Francium Trapping Facility. We acknowledge further support by University of Manitoba GETS.

