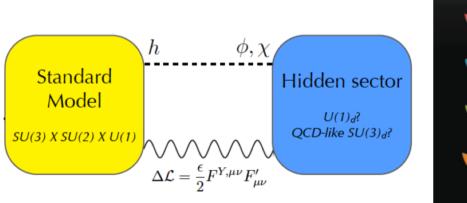


Dark/Hidden Sector Searches @ ATLAS

Alison Lister

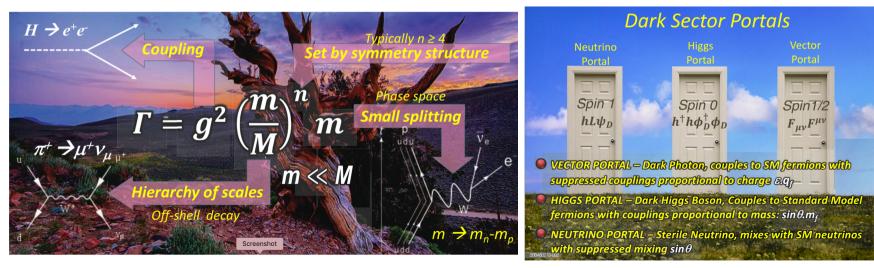

(University of British Columbia)

$\mathbf{2}$

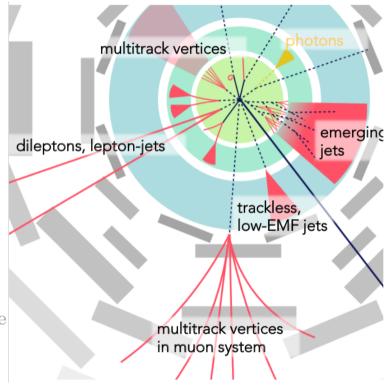
Alison Lister - CAP 2019 - Dark Sector ATLAS

Dark/Hidden Sector

- Extend the SM with a new 'sector' only weakly coupled to the SM
- Dark sector can be simple (e.g., a single $U(1)_d$) or more complicated, involving dark QCD sector / dark hadronization, dark matter candidates, etc.



3

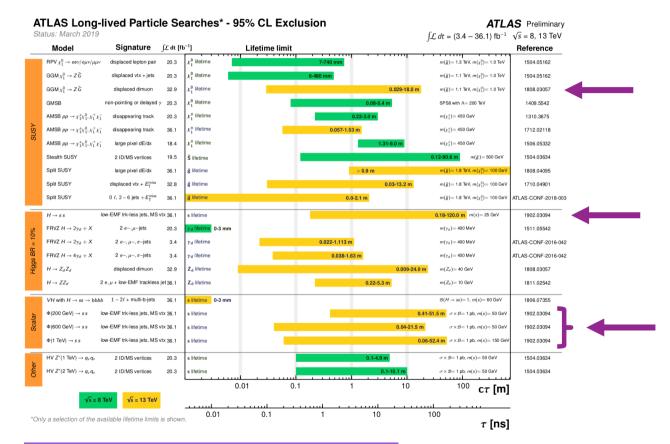

Dark/Hidden Sector

- Weak coupling to SM leads to long-lived particles and un-conventional signatures in ATLAS. Need at least one of
 - Small phase-space (nearly degenerate masses)
 - \cdot Small coupling
 - Highly virtual intermediate particles
- Need un-conventional reconstruction and background estimation
 - So experimentally a lot of fun!

Our Approach: Signature Based

- Displaced decays
 - Displaced multitrack vertices
 - $\boldsymbol{\cdot}$ Displaced photons
 - Displaced jets
 - Emerging jets
 - Trackless jets with low EM energy fraction
 - Displaced dileptons and lepton-jets
- Delayed decays and trapped stable particles
 - Particles stopped in the detector
 - Particles trapped in the detector (magnetic monopoles)
 - Decays not during LHC beam crossing (out-of-time detection)

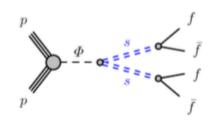
Experimental Challenges

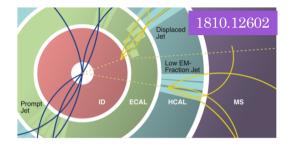

- Different shower shapes in calorimeters e.g. unusual fractions of EM/hadronic Energy
- Decays not from the primary vertex
 - Non-standard track reconstruction ('large radius tracking') (ATL-PHYS-PUB-2017-014)
 - Secondary vertex finding algorithms (ATL-PHYS-PUB-2019-013)
 - Jets appearing in muon system
- Timing information useful but not available for all detectors
- Non-standard trigger requirements
- · Cannot process all data in these 'non-standard ways': need to be selective
- Simulation samples not readily available (MC)
- Unusual backgrounds
 - Pile-up, beam induced backgrounds, cosmic rays,...
 - Long-lived SM hadrons
 - Material interactions (mostly in tracker)
 - Electronic noise
- Often dealing with very small number of events

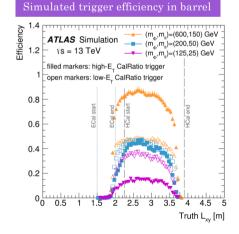
Alison Lister - CAP 2019 - Dark Sector ATLAS

Experimental Challenges: Solutions

- \cdot Simple trigger requirements while keeping bandwidth low
 - Often rely on prompt particles in associated production
 - Trigger during abort gaps or in 'bunch after' something happens
 - Use timing information or calorimeter layer information in non-standard ways
- Reconstruction
 - Track reconstruction optimized for prompt particles -> needs different algorithms that take time
 - e.g. Only use un-used hits from first 'pass' at reconstruction
 - \cdot Displaced vertex identification
 - + Build on b-tagging knowledge but not always appropriate
 - Calorimeter noise spikes more concerning
- Background
 - Obtain as much as possible from data
 - Use control regions to validate and/or constrain

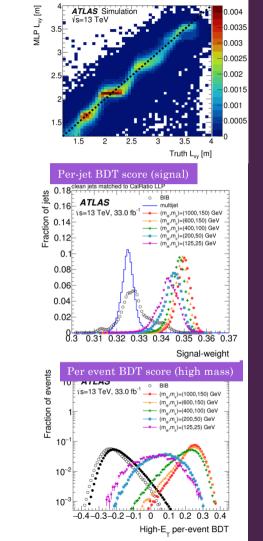

What we cover: Long-Lived Particles



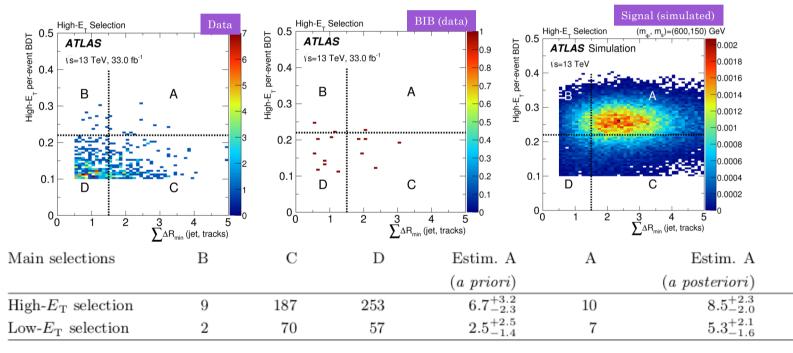

+ 'bonus' brand new heavy neutrino search

- Assume a simplified hidden sector with a heavy neutral scalar decaying to two 'dark' scalars
- Focus on decays in (or just before) the calorimeter
- Sensitivity
 - 125 GeV $\leq m_{\Phi} \leq 1$ TeV
 - $5 \text{ GeV} < m_s < 400 \text{ GeV}$
 - + 2 different analysis optimisations for 'high mass' and 'low mass' Φ
- Dataset and trigger
 - 2016 data only
 - High- E_T CalRatio trigger (33 fb⁻¹)
 - + Low efficiency for $m_{\Phi}\!<\!\!200~{\rm GeV}$
 - + L1: narrow jets (0.2x0.2) $\mathrm{E_{T}}{>}60~\mathrm{GeV}$
 - Low- E_T CalRatio trigger (10.8 fb⁻¹, from Sept 2016)
 - + L1 topological trigger: largest energy deposit in HCal $E_T\!>\!30$ GeV && no ECal with $E_T\!\!>\!\!2$ GeV within dR=0.2
 - HLT same for both
 - + ≥ 1 jet with: E_T > 30 GeV && $\mid \eta \mid$ < 2.5 && $\log_{10}(E_H\!/E_{EM})$ > 1.2
 - + No tracks with $p_T\!\!>\!\!2$ GeV within $\varDelta R\!\!=\!\!0.2$ of that jet axis
 - + BIB removal cut (cell timing and position)
 - Dedicated background triggers: BIB, cosmics

EXOT-2017-025 arXiV 1902.03094

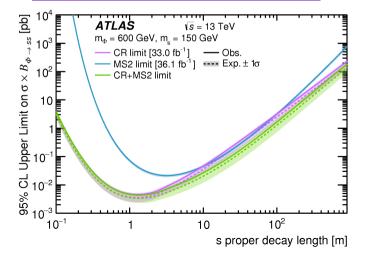


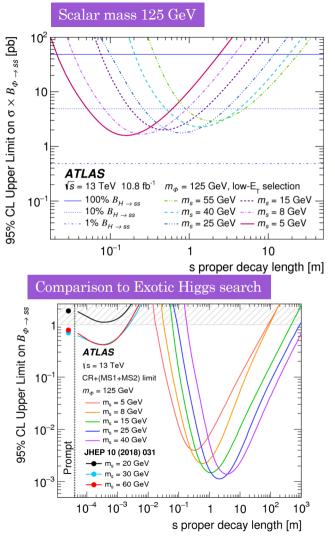
Event selection and reconstruction


- At least 2 trackless and low-EM fraction jets (CalRatio)
- Multi-layer perceptron (MLP) to determine radial and longitudinal decay positions (L_{xy} and L_z)

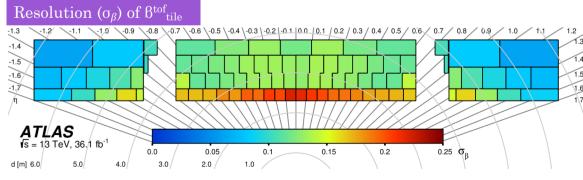
• Per-jet BDT

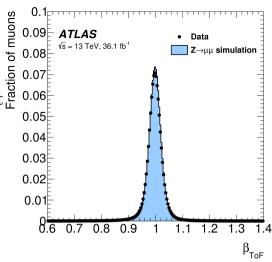
- 3 classes: Signal, QCD, Beam Induced background (BIB)
- Inputs: MLP L_{xy} and L_z , track variables, and jet properties
- + Flatten p_{T} spectrum for training
- Event-level BDTs
 - Separate training for low and high masses
 - Further reduce BIB
 - Inputs: 2 highest per-jet BDT weight for signal and BIB, vector over scalar sum of jet E_T , jet E_T s, ΔR (highest 2 signal BDT weight jets)




- Background
 - From ABCD method in simultaneous likelihood
 - Within each region: count events

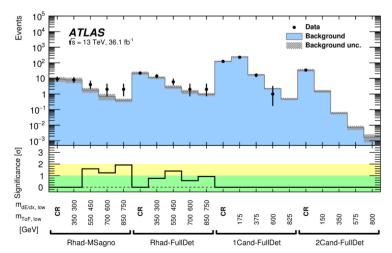
- $\cdot\,$ No excess of events observed
- Include combination with analysis looking for displε jets appearing in muon spectrometer

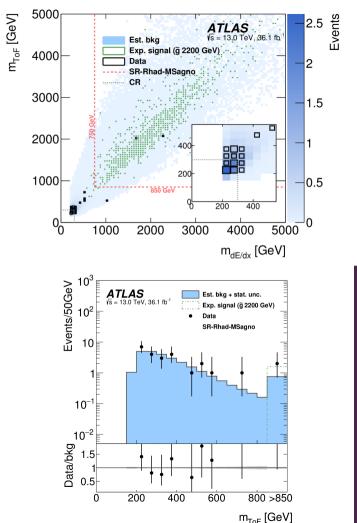




Heavy Charged LLP

- Charged particles but heavy
- Charged particles but heavy Similar signatures to 'normal' searches but the timing is different
- Show R-hadron, stau or chargino interpretation
- Dataset and selection
 - Up to 35 fb⁻¹
 - Triggers: Single muon && Missing ET
 - Observables
 - dE/dx estimate in pixel detector
 - Time-of-flight (ToF) in Tile Cal, and muon chambers (RPCs and MDTs)
 - Need dedicated calibration of dE/dX and ToF

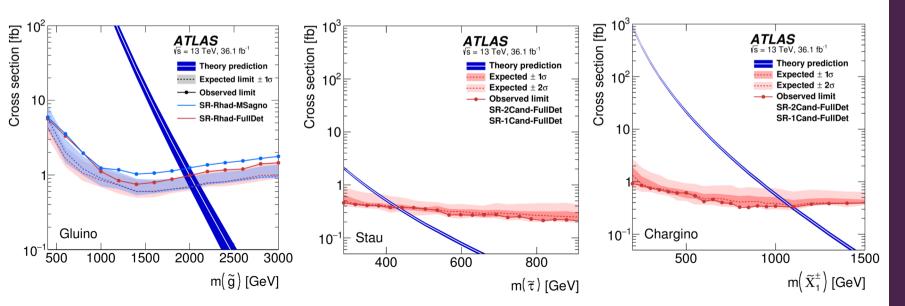



EXOT-2016-032

V 1902.01636

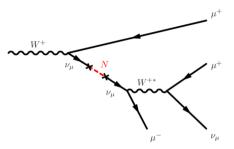
Heavy Charged LLP

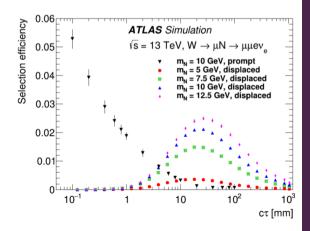
- Background estimation
 - Invert cuts to get shapes
 - Normalisation from control regions
 - Side-bands to SR
- Final fit
 - + CR and 16 SR
- \cdot No excess of events observed


13

Alison Lister - CAP 2019 - Dark Sector ATLAS

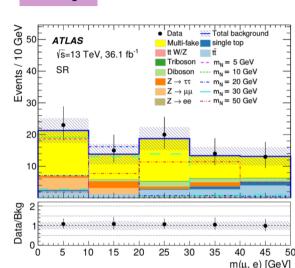
Heavy Charged LLP


 ${\boldsymbol{\cdot}}$ Results interpreted under various hypothesis of what is the LLP


- Gluino: m<2000 GeV
- Sbottom: m < 1250 GeV
- Stop: m<1340 GeV
- Stau: m<430 GeV
- Charginos: m<1090 GeV

Heavy Neutral Leptons (HNL)

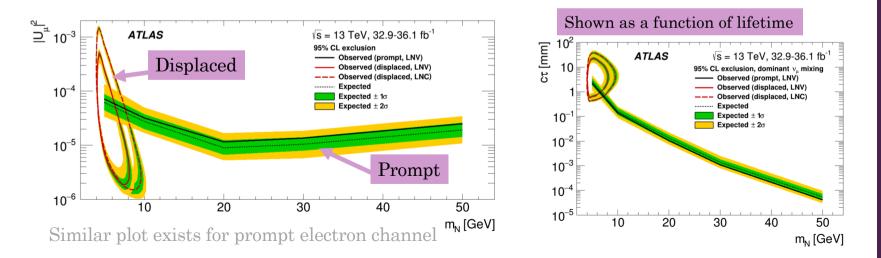
- Motivation / benchmark model
 - Right-handed neutrinos with Majorana masses below the EWK scale
 - Produced through mixing with muon or electron neutrinos
 - SM neutrinos acquire mass inversely proportional to HNL Majorana mass, providing natural explanation for neutrino masses and why they are so small
 - Heavy Neutral Leptons with O(keV) mass could be a valid dark-matter candidate
 - \cdot Assume a new heavy neutrino that weakly couples to SM neutrinos, W and leptons
- Data and event selection
 - + 2 targeted signatures: prompt and displaced
 - 36 fb⁻¹ (32.9 fb⁻¹) 13 TeV
 - Prompt
 - 1e or 2mu trigger
 - + 3 leptons (2/1 μ + 1/2e), veto same flavor opposite-sign, m_{lll} 40-90 GeV
 - Displaced
 - Targeting $m_{\rm N} < 20 \text{ GeV}$
 - 1 μ trigger
 - 1 prompt μ
 - Displaced di-muon vertex (4-400mm)


15

EXOT-2017-026 arXiV 1905.09787

Heavy Neutral Leptons

- Prompt background estimate
 - Simultaneous binned maximum-likelihood fit in p_T^{31} in three control regions (CR) and the signal region (SR)
 - Normalisation factors for dominant MC background: ttbar and fake-lepton background


- Displaced background estimate
 - Fully data-driven using control regions
 - Background: hadronic interactions in material, metastable particles (*b* and *s*-hadrons), accidental crossings tracks, cosmic-ray muons + prompt.
 - Prompt mu: Reduced by > 1 order of magnitude
 - 'Tight' selection criteria to remove all but cosmics
 - Cosmics are entirely rejected by cosmic veto

Prompt

Heavy Neutral Leptons

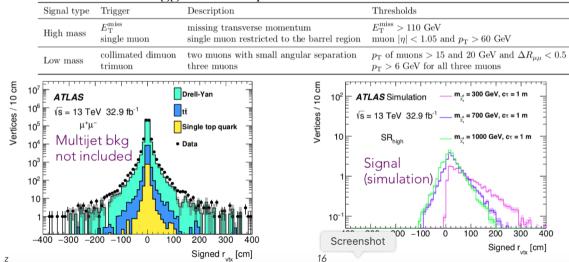
- Displaced analysis: 0 events observed
- Results interpreted in context of a single right-handed Majorana neutrino N produced in leptonic W boson decays, with just two parameters: mass $(m_{\rm N}$) and coupling strength ($\mid U \mid^2$)
- Displaced signature: mass range 4.5–10 GeV, $|\,U_{\mu}\,|^{\,2} down$ to $\sim\!\!2\times\!10^{-6}$ (1.5 $\times\!10^{-6}$) assuming Lepton Number Violation (LNV) (or LN Conservation)
 - + LNV has weaker limits: for given coupling strength, lifetime reduced by factor of two

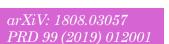
Putting it all together

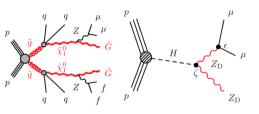
• Summary plots only available for SUSY interpretations (for now)

Conclusions

- Searches for Dark Sector mediators really in its infancy
 - Still lots of potential for improvement in experimental techniques and analysis optimisation
 - Still un-explored regions of phase-space that are accessible in principle
- Difficult analyses
 - $\cdot\,$ Non-standard triggers and reconstruction
 - Non-standard backgrounds: most need to be data-driven
 - \cdot Small number of events
 - Who said LHC analyses were becoming 'routine'?!

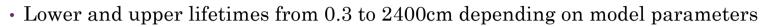

Backup

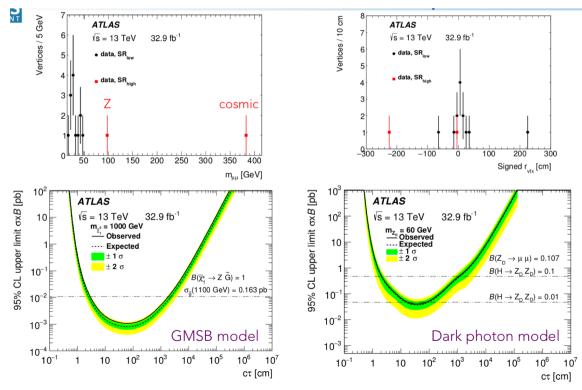



2(

Displaced dimuons

- Target: Long-lived neutralinos in GMSB scenario
 - + Long-lived dark photons Z_{D} from Higgs decay
 - + High-mass (Z $\rightarrow \mu \text{+} \mu \text{-})$ and low-mass (Z $\rightarrow \mu \text{+} \mu \text{-})$
 - $m(X_{1^0}) = 300-1100 \text{ GeV}, m(Z_D) = 20-60 \text{ GeV}$
- Signature: 2 opposite-sign $\boldsymbol{\mu}$ in muon system with vertex up to 4m from interaction point
 - + 1µ trigger efficiency 70% at IP, 10% at 4m
 - Includ<u>e also MET trigger to compensate</u>





21

Displaced dimuons

• No significant excess

22

H

arXiV: 1808.03057

PRD 99 (2019) 012001

 $Z_{\rm D}$

 $Z_{\rm D}$