Search for Dark Matter with NEWS-G experiment

Marie-Cécile Piro
University of Alberta
We are at the beginning of a new era of particle physics!
The race is open!!

Superheated fluids

cryogenic crystals

Superheated fluids

liquid noble gases
Direct detection strategies
In recent decades, several detector technologies have been developed with the quest to directly detect dark matter and test one of the most important unsolved questions in modern physics.

NEWS-G experiment focusses on low-WIMP mass searches. Extremely low threshold and very competitive!

What is NEWS-G experiment?

Where we are? Where we are going?
NEWS-G Collaboration
Spherical Proportional Counters: SPC

NEWS-G EXPERIMENT:

• **Detector:**
 Metallic vessel filled with a noble gas mixture, with a high voltage sensor.

• **Active target:**
 Gas of Neon, Helium, Hydrogen → Low-A target atoms increase sensitivity to low-mass WIMPs

• **Read-out:**
 Single readout channel (pre-amplifier).
NEWS-G EXPERIMENT:

- Incident particle scatters on target gas
 → Primary ionization
NEWS-G EXPERIMENT:

- Incident particle scatters on target gas
 → Primary ionization
- Drift of primary e^- towards sensor
 → Typical drift time $\sim 100\mu s$
NEWS-G EXPERIMENT:

- Incident particle scatters on target gas → Primary ionization
- Drift of primary e- towards sensor → Typical drift time \(\sim 100\mu s\)
- Avalanche of secondary e-/ion pairs → Amplification of signal through Townsend avalanche.
NEWS-G EXPERIMENT:

• Incident particle scatters on target gas
 → Primary ionization

• Drift of primary e⁻ towards sensor
 → Typical drift time ~ 100μs

• Avalanche of secondary e⁻/ion pairs
 → Amplification of signal through Townsend avalanche.

• Signal formation
 → Current induced by the secondary ions drifting away from anode
NEWS-G: Detector principle

NEWS-G EXPERIMENT:

- **Signal readout:**
 - Induced current integrated by a charge sensitive pre-amplifier and digitized.

Single electron pulse:
Spherical Proportional Counters

Advantages of NEWS-G experiment:

- **Low intrinsic capacitance:**
 \[C \approx 0.3 \text{ pF} \]
 \(\rightarrow \) low electronic noise

- Choice of the target, pressure

- High amplification gain from Townsend avalanche

- Volume fidualisation

- **Energy thresholds of \(~10\text{ eV}!\)**
First results of NEWS-G AT LSM

- **SEDINE (First prototype) was located at Laboratoire Souterrain de Modane.**
- **Rock coverage from the mountain of 2.9km (4800 m w.e.)**
SEDINE:

- 60 cm diameter vessel filled with Neon (+0.7% CH4) at 3.1bar
- 42-day long run, total exposure of 9.7 kg.day
- Very competitive results at low-mass range

NEWS-G EXPERIMENT:

• Bigger sphere with a lot of improvements and R&D!
UV Laser calibration system

- 213 nm laser used to extract primary electrons from wall of SPC
- Photo detector in parallel tags events and monitors laser power
- Laser intensity can be tuned to extract 1 to 100 photo electrons

Q. Arnaud et al. (NEWS-G), arXiv:1902.08960, accepted by PRD
UV Laser calibration system

Laser calibrations used to:

- Measure mean gain to 1% precision
- Measure drift and diffusion time
- Monitor stability of detector to within 1% (to be used for new detector)
- Measure trigger threshold efficiency

Q. Arnaud et al. (NEWS-G), arXiv:1902.08960, accepted by PRD

Daniel Durnford : Wednesday 1:45PM
37Ar measurements

Low energy, detector volume calibration with 37Ar:

Can also be used to measure the gas properties (W-value, Fano factor)

37Ar (gaseous):
$t_{1/2} = 35\text{ days}$
$0.27, 2.82\text{ keV x-rays}$

$W \sim 28\text{ eV/pair in Ne + 2\% CH}_4$
Fano factor ~ 0.2

Q. Arnaud et al. (NEWS-G), arXiv:1902.08960, accepted by PRD

→Daniel Durnford : Wednesday 1:45PM
Quenching factor measurements

\[W_{nr} = \frac{W_\gamma}{Q(E)} \]

Ongoing measurement campaigns at:

TUNL

Triangle Universities Nuclear Laboratory

Deuterium from a TANDEM accelerator used to produce neutrons: D(D,n)^3He

Neon measurement campaign:
Good data at 0.7 keV_{nr}
Working on 0.3 keV_{nr}
Quenching factor measurements

DETECTOR CONDITIONS:

- Neon (+2% CH4) at 500 mbar
- Energy calibration with Fe55 (5.9 keV)
- Use Time of Flight / Onset time cuts and backing Detector PSD cuts to remove background
- Two measurement campaigns performed:
 - 5 - 28 keV$_{nr}$ (analysis ongoing)
 - 0.3 - 6.5 keV$_{nr}$ (analysis ongoing)

→ **Jean-François Caron:**
For new setup at Queen’s Wednesday Poster

→ **Marie Vidal:** Wednesday 11:45AM
New generations of sensors

Research done on new sensors to solve various issues:

- Improve isotropy of the field / gain
- Improve time stability of detector
- Vary amplification and drift time independently

Solution:

- ACHINOS (Greek for sea urchin) in development: large gain, fast drift time electrode, with potential for directional signal

→ Already shown better resolution than single ball sensor in some setups!
NEWS-G at SNOLAB: Think BIG!

...to be installed in late 2019
2km underground!

- Red: Mine (active)
- Orange: Airlock
- Green: Clean room (Class 2000)
NEWS-G at SNOLAB: Think BIG!

Bigger, better SPC to be installed in SNOLAB!

A 140cm SPC made of low activity C10100 copper:
- 36 ± 13 mBq/kg of 210Pb
- $7 - 25$ µBq/kg of 232Th
- $1 - 5$ µBq/kg 238U

Compact Lead and PE shield, flushed with N_2

- 3 cm Archeological lead
- 22 cm Low Activity lead
- Stainless steel skin
- $\varnothing 140$ cm Copper sphere
- 40 cm HDPE
Electropolished and electroplating

• To stop Bremsstrahlung X-rays from ^{210}Pb and ^{210}Bi β-decays in copper, the inner surface of the detector was alternatively electropolished and electroplated.

• 0.5 mm pure copper plated on inner surface at LSM in collaboration with PNNL: expected background from ^{210}Pb and ^{210}Bi under 1 keV reduced by 70%.

• Detector currently being tested at LSM.
NEWS-G: Fabrication progress

The two hemispheres of the SPC are complete

Cleaned, and electron-beam welded

Steel skin of shield, casting of VLA lead nearly complete

Almost complete: Shield at LSM in June!

Development of multi-electrode sensors

ACHINOS!

Glove-box to store sensor in radon, O₂ free environment: complete!
Next steps and plan

- Detector is already built
- Shields are coming together (end of June)
- New detector currently being tested at LSM
- Tests will run over the summer from July!
- Next: @ SNOLAB
PE Shielding @ UofA
Activated charcoal trap cooled down to -40°C, (design at University of Alberta, being tested at Queen’s University)
Future goal: Projected sensitivity

Installation in SNOLAB to start late 2019

Assumptions:
- Flat background of 1.78 dru
- Exposure of 20 kg.days
- Energy window of [14eV_{ee}, 1keV_{ee}]
- $F = 0.2$, $\theta = 0.12$
- SRIM quenching factor
Summary

• SPCs are uniquely adapted for **low-mass Dark Matter detection**.
• The SEDINE detector **has already set competitive** limits under 1 GeV
• R&D in many different exciting directions:
 → **Laser and 37Ar calibrations** to characterize our detector down to single electron
 → Quenching measurements **down to 300 eV**
 → Development of new sensors: **ACHINOS**
• A **new, larger, cleaner** detector is coming to SNOLAB. Detector is already built, shields are coming together
 → New detector **currently being tested at LSM**, tests will run over the summer
 → **SNOLAB run by the end of the year!**
NEWS-G Collaboration

- **Queen’s University Kingston** – G Gerbier, P di Stefano, R Martin, G Giroux, S Crawford, M Vidal, G Savvidis, A Brossard, P Vazquez dS, K Dering, J Mc Donald, M Chapellier, P Gros, A Rolland, C Neyron
 - Copper vessel and gas set-up specifications, calibration, project management
 - Gas characterization, laser calibration, on smaller scale prototype
 - Simulations/Data analysis

- **IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay** – I Giomataris, M Gros., T Papaevangelou, JP Bard, JP Mols
 - Sensor/rod (low activity, optimization with 2 electrodes)
 - Electronics (low noise preamps, digitization, stream mode)
 - DAQ/soft

- **LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry** – M Zampaolo, A DastgheibiFard
 - Low activity archeological lead
 - Coordination for lead/PE shielding and copper sphere

- **Thessaloniki University** – I Savvidis, A Leisos, S Tzamarias
 - Simulations, neutron calibration
 - Studies on sensor

- **LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble** – D Santos, JF Muraz, O Guillaudin
 - Quenching factor measurements at low energy with ion beams

- **Pacific National Northwest Lab** – E Hoppe, R Bunker
 - Low activity measurements, Copper electroforming

- **RMCC (Royal Military College Canada) Kingston** – D Kelly, E Corcoran
 - 37 Ar source production, sample analysis

- **SNOLAB – Sudbury** – P Gorel, S Langrock
 - Calibration system/slow control

- **University of Birmingham** – K Nikolopoulos, P Knights, I Katsioulas, R Ward
 - Simulations, analysis, R&D

- **University of Alberta** – MC Piro, D Durnford
 - Gas purification, data analysis

- **Associated labs : TRIUMF** – F Retiere
NEWS-G at SNOLAB: Background

<table>
<thead>
<tr>
<th>Source</th>
<th>Isotope</th>
<th>Contamination / flux</th>
<th>Counts / keV / kg / day < 1 keV</th>
<th>Counts / keV / kg / day in [1 ; 5] keV</th>
<th>Rate [mHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper sphere (500 µm electrolytic inside)</td>
<td>(^{210}\text{Pb})</td>
<td>36 mBq/kg</td>
<td>1.34</td>
<td>1.2</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>(^{60}\text{Co})</td>
<td>38 µBq/kg</td>
<td>0.12</td>
<td>0.09</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(^{238}\text{U})</td>
<td>3 µBq/kg</td>
<td>0.012</td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(^{232}\text{Th})</td>
<td>13 µBq/kg</td>
<td>0.074</td>
<td>0.063</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(^{40}\text{K})</td>
<td>0.1 mBq/kg</td>
<td>0.03</td>
<td>0.013</td>
<td>0.061</td>
</tr>
<tr>
<td>Archeological lead</td>
<td>(^{210}\text{Bi})</td>
<td><25 mBq/kg</td>
<td><0.27</td>
<td>0.23</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(^{238}\text{U})</td>
<td>62 µBq/kg</td>
<td>0.18</td>
<td>0.12</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(^{232}\text{Th})</td>
<td>9 µBq/kg</td>
<td>0.026</td>
<td>0.014</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>(^{40}\text{K})</td>
<td><1 mBq/kg</td>
<td><0.22</td>
<td><0.16</td>
<td><0.62</td>
</tr>
<tr>
<td>VLA Lead</td>
<td>(^{238}\text{U})</td>
<td>62 µBq/kg</td>
<td>0.13</td>
<td>0.094</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(^{232}\text{Th})</td>
<td>9 µBq/kg</td>
<td>0.022</td>
<td>0.017</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>(^{40}\text{K})</td>
<td><1 mBq/kg</td>
<td><0.24</td>
<td><0.16</td>
<td><0.64</td>
</tr>
<tr>
<td>Cavern</td>
<td>(^{208}\text{Tl})</td>
<td>2.6 MeV γ</td>
<td>0.06 γ cm(^2)/s</td>
<td>0.088</td>
<td>0.069</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>1.992</td>
<td>1.678</td>
<td>2.802</td>
</tr>
</tbody>
</table>

Underground laboratories

- Cosmic rays & cosmic activation of detector materials
NEWS-G EXPERIMENT:

- Primary ionization
- Drift of primary e- towards sensor
- Avalanche in the vicinity of the anode
- Signal formation
 → Current induced by the ions