

Search for Dark Matter with NEWS-G experiment

Marie-Cécile Piro University of Alberta

We are at the beginning of a new era of particle physics!

The race is open!!

Direct detection strategies

Outlines

In recent decades, several detector technologies have been developed with the quest to directly detect dark matter and test one of the most important unsolved questions in modern physics.

NEWS-G experiment focusses on low-WIMP mass searches. Extremely low threshold and very competitive!

What is NEWS-G experiment?

Where we are? Where we are going?

NEWS-G Collaboration

Spherical Proportional Counters: SPC

NEWS-G EXPERIMENT.

Detector:

Metallic vessel filled with a noble gas mixture, with a high voltage sensor.

Active target:

Gas of Neon, Helium, Hydrogen

→ Low-A target atoms increase sensitivity to low-mass WIMPs

Read-out:

Single readout channel (pre-amplifier).

SEDINE: LSM

Inside sphere: rod + umbrella + ball = sensor

NEWS-G EXPERIMENT:

Incident particle scatters on target gas

→ Primary ionization

NEWS-G EXPERIMENT:

Incident particle scatters on target gas

→ Primary ionization

Drift of primary e⁻ towards sensor

 \rightarrow Typical drift time ~ 100 μ s

NEWS-G EXPERIMENT:

Incident particle scatters on target gas

→ Primary ionization

- Drift of primary e⁻ towards sensor
 - \rightarrow Typical drift time $\sim 100 \mu s$
- Avalanche of secondary e-/ion pairs
 - → Amplification of signal through Townsend avalanche.

NEWS-G EXPERIMENT:

Incident particle scatters on target gas

→ Primary ionization

- Drift of primary e⁻ towards sensor
 - \rightarrow Typical drift time $\sim 100 \mu s$
- Avalanche of secondary e-/ion pairs
 - → Amplification of signal through Townsend avalanche.
- Signal formation
 - → Current induced by the secondary ions drifting away from anode

NEWS-G EXPERIMENT:

- Signal readout:
 - → Induced current integrated by a charge sensitive pre-amplifier and digitized.

Single electron pulse:

Spherical Proportional Counters

Advantages of NEWS-G experiment:

First results of NEWS-G AT LSM

- SEDINE (First prototype) was located at Laboratoire Souterrain de Modane.
- Rock coverage from the mountain of 2.9km (4800 m w.e.)

First results @ LSM

SEDINE:

- 60 cm diameter vessel filled with Neon (+0.7% CH4) at 3.1bar
- 42-day long run, total exposure of 9.7 kg.day
- Very competitive results at low-mass range

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018)

NEWS-G: the next phase!

NEWS-G EXPERIMENT:

 Bigger sphere with a lot of improvements and R&D!

UV Laser calibration system

- 213 nm laser used to extract primary electrons from wall of SPC
- Photo detector in parallel tags events and monitors laser power
- Laser intensity can be tuned to extract 1 to 100 photo electrons

UV Laser calibration system

<u>Laser calibrations used to:</u>

- Measure mean gain to 1% precision
 Measure drift and diffusion time
- Monitor stability of detector to within 1% (to be used for new detector)
- Measure trigger threshold efficiency

³⁷Ar measurements

Low energy, detector volume calibration with ³⁷Ar: D.G. Kelly et al. Journal of Radioanalytical and Nuclear Chemistry 318(1), 279 (2018).

Can also be used to measure the gas properties (W-value, Fano factor)

Q. Arnaud et al. (NEWS-G), arXiv:1902.08960, accepted by PRD

Quenching factor measurements

Aluminum window calibration

$$W_{\rm nr} = W_{\gamma}/Q(E)$$

Ongoing measurement campaigns at:

Deuterium from a TANDEM accelerator used to produce neutrons: D(D,n)³He

Stainless steel 15 cm Ø sphere

Neon measurement campaign:

Backing detector

Good data at 0.7 keV_{nr}

Working on 0.3 keV_{nr}!

→ Marie Vidal: Wednesday 11:45AM

Quenching factor measurements

DETECTOR CONDITIONS:

• Neon (+2% CH4) at 500 mbar

- Energy calibration with Fe55 (5.9 keV)
- Use Time of Flight / Onset time cuts and backing Detector PSD cuts to remove background
- Two measurement campaigns performed:
 - 5 28 keV_{nr} (analysis ongoing)
 - 0.3 6.5 keV_{nr} (analysis ongoing)

Backing detectors

Setup at TUNL

→ Jean-François Caron:

For new setup at Queen's Wednesday Poster

New generations of sensors

Research done on new sensors to solve various issues:

- Improve isotropy of the field / gain
- Improve time stability of detector
- Vary amplification and drift time independently

Solution:

- ACHINOS (Greek for sea urchin) in development: large gain, fast drift time electrode, with potential for directional signal
- → Already shown better resolution than single ball sensor in some setups!

NEWS-G at SNOLAB: Think BIG!

...to be installed in late 2019

2km underground!

NEWS-G at SNOLAB: Think BIG!

Bigger, better SPC to be installed in SNOLAB!

Electropolished and electroplating

- To stop Bremsstrahlung X-rays from ²¹⁰Pb and ²¹⁰Bi β-decays in copper, the inner surface of the detector was alternatively electropolished and electroplated
- 0.5 mm pure copper plated on inner surface at LSM in collaboration with PNNL: expected background from ²¹⁰Pb and ²¹⁰Bi under 1 keV reduced by 70%

Detector currently being tested at LSM

NEWS-G: Fabrication progress

The two hemispheres of the SPC are complete

Cleaned, and electron-beam welded

Steel skin of shield, casting of VLA lead nearly complete

Almost complete: Shield at LSM in June!

Development of multielectrode sensors

ACHINOS!

Glove-box to store sensor in radon, O₂ free environment: complete!

28

Next steps and plan

PE Shielding @ UofA

30

Radon trap @ UofA

Activated charcoal trap cooled down to -40C, (design at University of Alberta, being tested at Queen's University)

Future goal: Projected sensitivity

Installation in SNOLAB to start late 2019

Summary

- SPCs are uniquely adapted for low-mass Dark Matter detection.
- The SEDINE detector has already set competitive limits under 1 GeV
- R&D in many different exciting directions:
 - → Laser and ³⁷Ar calibrations to characterize our detector down to single electron
 - → Quenching measurements down to 300 eV
 - → Development of new sensors: **ACHINOS**
- A new, larger, cleaner detector is coming to SNOLAB. Detector is already built, shields are coming together
 - → New detector currently being tested at LSM, tests will run over the summer
 - → SNOLAB run by the end of the year!

NEWS-G Collaboration

Queen's University Kingston - G Gerbier, P di Stefano, R Martin, G Giroux, S Crawford, M Vidal, G Savvidis, A Brossard, P Vazquez dS, , K Dering, J Mc Donald, M Chapellier, P Gros, A Rolland, C Nevron

- Copper vessel and gas set-up specifications, calibration, project management
- Gas characterization, laser calibration, on smaller scale prototype
- Simulations/Data analysis
- IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay -I Giomataris, M Gros,, T Papaevangelou, JP Bard, JP Mols
 - Sensor/rod (low activity, optimization with 2 electrodes)
 - Electronics (low noise preamps, digitization, stream mode)
 - DAQ/soft

- Low activity archeological lead
- Coordination for lead/PE shielding and copper sphere
- Thessaloniki University I Savvidis, A Leisos, S Tzamarias
 - Simulations, neutron calibration
 - Studies on sensor
- LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble D Santos, JF Muraz, O Guillaudin
 - Quenching factor measurements at low energy with ion beams

- - Low activity measurements, Copper electroforming
- RMCC (Royal Military College Canada) Kingston D Kelly, E Corcoran
 - 37 Ar source production, sample analysis
- **SNOLAB –Sudbury** P Gorel, S Langrock
 - Calibration system/slow control

- Simulations, analysis, R&D
- University of Alberta: MC Piro, D Durnford
 - Gas purification, data analysis
- Associated labs: TRIUMF F Retiere

NEWS-G at SNOLAB: Background

		Contamination / flux	Counts / keV / kg / day < 1 keV	Counts / keV / kg / day in [1;5] keV	Rate [mHz]
Copper sphere (500 µm electrolytic inside)	²¹⁰ Pb	36 mBq/kg	1.34	1.2	1.14
	⁶⁰ Co	38 μBq/kg	0.12	0.09	0.37
	²³⁸ U	3 μBq/kg	0.012	0.011	0.027
	²³² Th	13 μBq/kg	0.074	0.063	0.15
	⁴⁰ K	0.1 mBq/kg	0.03	0.013	0.061
Archeological lead	²¹⁰ Bi	<25 mBq/kg	<0.27	0.23	0.46
	²³⁸ U	62 μBq/kg	0.18	0.12	0.37
	²³² Th	9 μBq/kg	0.026	0.014	0.052
	⁴⁰ K	<1 mBq/kg	<0.22	<0.16	<0.62
VLA Lead	²³⁸ U	62 μBq/kg	0.13	0.094	0.37
	²³² Th	9 μBq/kg	0.022	0.017	0.063
	⁴⁰ K	<1 mBq/kg	<0.24	<0.16	<0.64
Cavern	²⁰⁸ TI 2.6 MeV γ	0.06 γ cm ² /s	0.088	0.069	0.26
TOTAL			1.992	1.678	2.802

35

Underground laboratories

• Cosmic rays & cosmic activation of detector materials

NEWS-G EXPERIMENT:

Primary ionization

Drift of primary e- towards sensor

Avalanche in the vicinity of the anode

Signal formation

→ Current induced by the ions

Raw pulse

