Neutrino Oscillations at T2K and Hyper-K

Mark Hartz TRIUMF & Kavli IPMU (WPI), University of Tokyo

2019 CAP Congress Simon Fraser University June 6, 2019

Introduction to Neutrino Oscillations

- Neutrinos interact via the weak force
- Have states of definite flavor associated with charged leptons

- Will propagate as states of definite mass
- Weak states and mass state need not be the same

- Mass states propagate with a relative phase
- After propagation, the composition of flavor state is changed

$$P_{lpha
ightarrow eta} = \left| \left\langle
u_eta(L) | \,
u_lpha
ight
angle
ight|^2 = \left| \sum_i U_{lpha i}^* U_{eta i} e^{-i rac{m_i^2 L}{2E}}
ight|^2$$

3-Flavor Oscillations

Pontecorvo-Maki-Nakagawa-Sakata Mixing Matrix

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s^{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$$

Unitary mixing matrix oscillations ($s_{12} = \sin \theta_{12}$, etc.) Majorana phases

δ , α_{21} and α_{31} introduce new sources of CP violation

- 3-flavor oscillations: unitary matrix parametrized with three mixing angles and a phase
- Oscillations also depend on the mass squared differences of the mass states, distance traveled (L) and neutrino energy (E)

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 E}\right) + 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin \left(\frac{\Delta m_{ij}^2 L}{2 E}\right)$$

3-Flavor Oscillations

Pontecorvo-Maki-Nakagawa-Sakata Mixing Matrix

$$U = \begin{vmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s^{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{vmatrix}$$

Unitary mixing matrix oscillations ($s_{12} = \sin \theta_{12}$, etc.) Majorana phases

δ , α_{21} and α_{31} introduce new sources of CP violation

- 3-flavor oscillations: unitary matrix parametrized with three mixing angles and a phase
- Oscillations also depend on the mass squared differences of the mass states, distance traveled (L) and neutrino energy (E)

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 E} \right)$$

$$+ 2 \sum_{i>j} \operatorname{Im} \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin \left(\frac{\Delta m_{ij}^2 L}{2 E} \right)$$

How do we know neutrinos oscillate?

Evidence of Oscillations: Super-Kamiokande

Phys.Rev.Lett. 81 (1998) 1562-1567

- By the late 90's deficits observed in solar and atmospheric neutrino data
- Super-Kamiokande: 22.5 kton fiducial mass water Cherenkov detector
- Measure neutrino oscillations as a function of zenith angle
 - Downward events = short baseline (L) and no oscillations
 - Upward events = long baseline (L) and significant oscillations
- This was a smoking gun for the deficits to be explained by neutrino oscillations

Evidence of Oscillations: SNO

 With heavy water target, SNO was sensitive to 3 types of neutrino interactions:

$$\nu_e + d \rightarrow p + p + e^-$$
 (CC),
 $\nu_x + d \rightarrow p + n + \nu_x$ (NC),
 $\nu_x + e^- \rightarrow \nu_x + e^-$ (ES).

- By combining all three modes, showed that electron neutrino flux was 1/2 of the muon+tau neutrino flux
- Showed for the first time that neutrinos were changing flavor, confirming the oscillation

State of Oscillation Parameter Measurements

- Sine of mixing angles measured to 5% precision or better
 - Maximal mixing for $\sin^2(2\theta_{23})=1$, $\sin(\theta_{23})=1/\sqrt{2}$

- Weak global preference for δ_{cp} near $3\pi/2$ (- $\pi/2$) driven by T2K+SK+Reactors+NOvA
- m₃ state is heaviest (normal hierarchy) or lightest (inverted hierarchy) undetermined
 - The matter effect in long baseline experiments gives sensitivity to hierarchy

JHEP 01 (2019) 106

$$\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \,\text{eV}^2$$

$$\Delta m_{32}^2 = (2.45 \pm 0.05) \times 10^{-3} \text{ eV}^2$$

or
 $\Delta m_{32}^2 = (-2.52 \pm 0.05) \times 10^{-3} \text{ eV}^2$

Human-made Neutrino Beams

- Produce controlled sources of neutrinos
 - Reactor produced electron antineutrinos
 - Accelerator production muon (anti)neutrinos

- Control baseline (L) for oscillations
- Tune neutrino spectrum for desired energies
- Select muon neutrinos or muon antineutrinos by focusing π^+ or π^-
- Measure neutrinos before oscillations with near detectors

Neutrino Interactions in Detectors

Select neutrino interactions in the charged current interaction mode:

- Final state includes hadrons that may not be detected:
 - Water Cherenkov: most protons below Cherenkov threshold
 - Tracking detectors: neutrons may not be detected
- Need neutrino energy to calculate $P(\theta_{23}, \Delta m^2_{32}, ..., E_v)$
 - Since we don't fully reconstruct the event, we rely on models to infer energy

The T2K Experiment

~500 researchers, 62 institutes, 11 countries

Muon (anti)neutrino beam generated at J-PARC and detected at Super-Kamiokande

In 2013 T2K made the first discovery of an appearance mode: $v_{\mu} \rightarrow v_{e}$ (Phys. Rev. Lett. 112, 061802 (2014))

Oscillation Physics at T2K

- Muon (anti)neutrino survival depends on sin²(2θ₂₃) and Δm²₃₂
- Electron (anti)neutrino appearance
 - $\sin^2(\theta_{23})$, $\sin^2(2\theta_{13})$ and Δm^2_{32} in leading term
 - Sub-leading dependence on δ_{cp}
 - CP conservation at δ_{cp}=0,π
 - Maximal CP violation at δ_{cp}=-π/2,π/2
 - Matter effect → dependence on the mass hierarchy
 - Normal Hierarchy (NH): enhanced rate for neutrinos, decreased for antineutrinos

T2K Oscillation Analysis (In 1 Slide)

- Fit flux and interaction models to ND280 data
 - Update and constrain model parameters
 - Fit µ and e neutrino candidates in Super-K to extract oscillation parameter constraints

Neutrino Interaction Model

Neutrino Production Model

CP Preference at T2K

Error Source	<pre>% Error on neutrino/ antineutrino rate</pre>
Pion Interactions	1.58
Neutral Current Background	1.50
Electron (anti)neutrino cross section	3.03
Extrapolation from near detector	2.31
Removal Energy	3.74
Far Detector model	1.47
Total	5.87

- T2K observes what appears to be a statistical fluctuation in the data
- T2K has a weak preference for the normal hierarchy with a posterior probability of 0.89
- The 2σ interval for δ_{cp} : [-2.965, -0.628] (NH), [-1.799, -0.979] (IH)
- T2K's systematic uncertainty is 6%

Muon Neutrino Survival

- T2K is consistent with maximal mixing (sin²θ₂₃=0.5)
- Small preference for the upper octant

Muon Neutrino Survival

- FNAL JTEP Seminar, June 2018
- T2K and NOvA measure consistent values of Δm²₃₂
- T2K is consistent with maximal mixing (sin²θ₂₃=0.5), while NOvA prefers non-maximal mixing
- Maximal mixing could point to underlying symmetry
 - Important measurement for the future

Hyper-K, The Next Generation

Improvements for Hyper-K

- Beam will be upgraded from current power of ~500 kW to 1.3 MW
 - New main ring power supplies, upgrade of RF
- Hyper-K will have an 8 times larger fiducial mass than Super-K
 - Same off-axis angle
- New photo-detector technologies -> improved photon detection
- New near/intermediate detectors to control systematic uncertainties
- Hyper-K will accumulate stats for accelerator based program 20x faster than T2K currently does

Improvements for Hyper-K

- Beam will be upgraded from current power of ~500 kW to 1.3 MW
 - New main ring power supplies, upgrade of RF
- Hyper-K will have an 8 times larger fiducial mass than Super-K
 - Same off-axis angle
- New photo-detector technologies -> improved photon detection
- New near/intermediate detectors to control systematic uncertainties
- Hyper-K will accumulate stats for accelerator based program 20x faster than T2K currently does

18

Broad Physics Programs

Hyper-K has a broad physics programs beyond long baseline neutrino oscillations

Atmospheric neutrinos

Nucleon decay

Supernova relic neutrinos

Solar neutrinos

Supernova burst

CP Violation Search at Hyper-K

Appearance v mode

Appearance \bar{v} mode

arXiv:1805.04163

- Recall that T2K and NOvA are observing 10's of candidate events
- Hyper-K will observe ~2000 electron neutrino and electron antineutrino candidates each
 - 3% statistical error on the CP violation measurement is achieved
 - Controlling systematic errors is critical: T2K's current errors are ~6%

CP Violation Search at Hyper-K

- Recall that T2K and NOvA are observing 10's of candidate events
- Hyper-K will observe ~2000 electron neutrino and electron antineutrino candidates each
 - 3% statistical error on the CP violation measurement is achieved
 - Controlling systematic errors is critical: T2K's current errors are ~6%

CP Phase Sensitivity

- After 10 years of operation, Hyper-K has $5(3)\sigma$ sensitivity for discovery of CP violation for 57%(76%) of δ_{cp} values
- Hyper-K can achieve $10-20^{\circ}$ precision on δ_{cp} , depending on the true value

Mass Hierarchy at Hyper-K

- Short baseline little hierarchy sensitivity from Hyper-K accelerator neutrinos
- Large sample of atmospheric neutrinos
 - Determine the hierarchy with 4σ significance in 10 years of operation

Maximal Mixing?

- Hyper-K will have world leading sensitivity to sin²θ₂₃
- Open questions: $\theta_{23} = 45^{\circ}$, >45° or <45°
- Controlling systematic uncertainties for this measurement will be a challenge

Systematic Uncertainties for Hyper-K (1)

- CP violation measurement in the electron (anti)neutrino appearance modes
- Beam at near detectors is primarily muon (anti) neutrinos

- Electron (anti)neutrino cross sections differ from muon (anti)neutrino cross section
- Theoretical errors on difference are at least 3%
- No precise measurements in the sub-GeV region

Systematic Uncertainties for Hyper-K (2)

Muon neutrino candidates

- Oscillation maximum region filled with high energy events that feed down to lower reconstructed energy
 - From difficult to model processes (2p-2h, pion production/absorption) with large systematic uncertainties
- Measuring this feed down is critical for the measurement of θ_{23}

NuPRISM (IWCD)

- New intermediate water Cherenkov detector (IWCD) for Hyper-K
- Detector position is movable, probing different neutrino spectra due to the off-axis angle effect

NuPRISM (IWCD) moves vertically to probe range of offaxis angles

See talk by J. Walker in this session

Measuring the Feed Down

Linear Combination, 0.9 GeV Mean

- Start with off-axis spectrum (blue)
- More on-axis measurements subtract high energy tail
- More off-axis measurements subtract low energy tail
- Left with spectrum for narrow range of energies (red)
- Can directly measure the reconstructed energy resolution function (left) including the feed down

Measuring the Electron (anti)Neutrino X-sec

- A pure, high-statistics sample of electron neutrinos can be selected in the IWCD
- Can measure $\sigma(v_e)/\sigma(v_\mu)$ with ~3% accuracy or better
 - Updating for antineutrinos
- The error on the measurement can best be reduced by reducing the flux model uncertainty
- Benefit from improvements in understanding kaon production and interactions (EMPHATIC)

See talk by M. Pavin in this session

Photosensors for the IWCD (NuPRISM)

- IWCD detector size requires small and fast photosensors
- Have developed a multi-PMT photodetector design with many small sensors integrated in modules

See talk by T. Lindner in session W1-7 for more details on the mPMT

See talk by N. Prouse in this session for machine learning applied to event reconstruction with mPMTs

Conclusion

- Neutrino oscillations probe physics beyond the Standard model, including a potential new source of CP violation
- T2K shows a hint of CP violation and preference for maximal mixing through θ_{23}
- Hyper-K will deliver 20 times the sensitivity of T2K to make precision oscillation measurements
- Controlling systematic uncertainties is one of the primary challenges of Hyper-K
 - Exciting solutions such as the IWCD (NuPRISM) are being pursued hear in Canada
 - Success promises great rewards with a world-leading physics program at Hyper-K

Thank You!

Schedule for Hyper-K

- Seed funding for Hyper-K was approved for 2019
 - Typical for large projects in Japan to start with seed funding
- University of Tokyo has committed to the start of construction in 2020

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2} + \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{32}) \cos\delta$$

$$\mp \sin^{2}2\theta_{23} \sin^{2}2\theta_{13} \sin^{2}2\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \sin(\Delta_{32}) \sin\delta$$

$$+ \cos^{2}\theta_{13} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}. \qquad (2)$$

$$\Delta_{ji} = \frac{\Delta m_{ji}^{2} L}{4E} \qquad aL/\Delta_{31} = 2\sqrt{2}G_{F}N_{e}E/\Delta m_{31}^{2}$$

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2} + \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{32}) \cos\delta$$

$$\mp \sin^{2}\theta_{23} \sin^{2}\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \sin(\Delta_{32}) \sin\delta$$

$$+ \cos^{2}\theta_{13} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}. \qquad (2)$$

$$\Delta_{ji} = \frac{\Delta m_{ji}^{2} L}{4E} \qquad aL/\Delta_{31} = 2\sqrt{2}G_{F}N_{e}E/\Delta m_{31}^{2}$$

Leading term probes mixing angle and mass splitting

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2} + \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{32}) \cos\delta$$

$$\mp \sin^{2}2\theta_{23} \sin^{2}2\theta_{13} \sin^{2}2\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \sin(\Delta_{32}) \sin\delta$$

$$+ \cos^{2}\theta_{13} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}. \qquad (2)$$

$$\Delta_{ji} = \frac{\Delta m_{ji}^{2} L}{4E} \qquad aL/\Delta_{31} = 2\sqrt{2}G_{F}N_{e}E/\Delta m_{31}^{2}$$

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2} + \sin^{2}\theta_{23} \sin^{2}\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{32}) \cos\delta$$

$$\mp \sin^{2}\theta_{23} \sin^{2}\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \sin(\Delta_{32}) \sin\delta$$

$$+ \cos^{2}\theta_{13} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}. \qquad (2)$$

$$\Delta_{ji} = \frac{\Delta m_{ji}^{2}L}{4E} \qquad aL/\Delta_{31} = 2\sqrt{2}G_{F}N_{e}E/\Delta m_{31}^{2}$$

 CP odd interference term can introduce CP violation (sign flips for neutrinos/ antineutrinos)

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2} + \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{32}) \cos\delta$$

$$\mp \sin^{2}2\theta_{23} \sin^{2}2\theta_{13} \sin^{2}2\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \sin(\Delta_{32}) \sin\delta$$

$$+ \cos^{2}\theta_{13} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}. \qquad (2)$$

$$\Delta_{ii} = \frac{\Delta m_{ii}^{2} L}{AE} \qquad aL/\Delta_{31} = 2\sqrt{2}G_{F}N_{e}E/\Delta m_{31}^{2}$$

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2} + \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{32}) \cos\delta$$

$$\mp \sin^{2}\theta_{23} \sin^{2}\theta_{13} \sin^{2}\theta_{12} \cos\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \sin(\Delta_{32}) \sin\delta$$

$$+ \cos^{2}\theta_{13} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}. \qquad (2)$$

$$\Delta_{ii} = \frac{\Delta m_{ji}^{2} L}{4E} \qquad aL/\Delta_{31} = 2\sqrt{2}G_{F}N_{e}E/\Delta m_{31}^{2}$$

Matter effect introduces a dependence on the mass ordering