

The Belle II experiment

RACHA CHEAIB UNIVERSITY OF BRITISH COLUMBIA

CAP CONGRESS JUNE 5TH, 2019

• The Nobel Prize:

Makoto Kobayashi, KEK, Tsukuba, Japan

> Toshihide Maskawa, YITP, Kyoto University, and Kyoto Sangyo University, Japan

Racha Cheaib, University of British Columbia

Belle II

A New Generation "Super Flavor Factory" @ World's Highest-Luminosity Electron Positron Collider

Racha Cheaib, University of British Columbia

Belle-II experiment

B factory with a target integrated luminosity of 50 ab⁻¹.

(Super) B-factory (~1.1 x 10⁹ *BB* pairs/ab⁻¹) (Super) charm factory (~1.3 x 10⁹ cc pairs/ab⁻¹) (Super) τ factory (~0.9 x 10⁹ τ ⁺ τ ⁻ pairs/ab⁻¹) Analysis sensitivity in B, τ and charm to O(10⁻⁹) branching fractions

'4

The Belle II collaboration

101 institutions from 26 countries ~900 researchers ~270 graduate students

Current Canadian group:

UBC: C. Hearty, J. McKenna, R. Cheaib, E. Hill, A. Hershenhorn
Victoria: J. M. Roney, R. Kowalewski, R. Sobie, A. Sibidanov, S. Longo, C. Miller A. Beaulieu M. Ebert
McGill: S. Robertson, A. Warburton, A. Fodor, H. Wakeling, R. Seddon, R. MacGibbon, T. Shillington, K. Amirie

Racha Cheaib, University of British Columbia

Racha Cheaib, University of British Columbia

Belle II detector

Significant upgrade of Belle II detector to handle higher event rate and higher background levels.

- Extended vertex detector region (added pixel detector)
- Extended Drift Chamber region
- New calorimeter electronics (waveform sampling and fitting)
- New PID detector in the barrel and forward region
- High efficiency K_L and Muon detector

Racha Cheaib, University of British Columbia

Rich Physics agenda

- B-physics:
 - CPV: B→ J/ ψ K_s°, ϕ K°
 - Rare B decays: $B \rightarrow Kvv$, $K\tau^+\tau^-$
 - B anomalies
- Lepton flavour violation:
 - ο τ→μγ
- Charm Physics: D-mixing
 CPV in charm sector
- Dark sector studies
 - A', ALPs, Z'
- Bottomonium spectroscopy and exotic states

CP Violation				
$S(B \to \phi K^0)$	***	0.01/	0.02	Belle II
$S(B \to \eta' K^0)$	***	CPV	0.01	Belle II
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***		4	Belle II
$\mathcal{A}(B \to K^+ \pi^-) \ [10^{-2}]$	***		0.20	LHCb/Belle II
(Semi-)leptonic				
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	(Semi)	3%	Belle II
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	EDTONIC	7%	Belle II
$R(B \to D \tau \nu)$	***		3%	Belle II
$\frac{R(B \to D^* \tau \nu)}{R(B \to D^* \tau \nu)}$	***		2%	Belle II/LHCb
Radiative & EW Penguins	-11-			
$\mathcal{B}(B \to X_s \gamma)$	**		4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***		0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	FWP	0.03	Belle II
$S(B \to \rho \gamma)$	**		0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**		0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***		15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***		20%	Belle II
$R(B \to K^*\ell\ell)$	***		0.03	Belle II/LHCb
Charm				· · · · ·
$\mathcal{B}(D_s \to \mu \nu)$	***		0.9%	Belle II
$\mathcal{B}(D_s \to \tau \nu)$	***	Charm	2%	Belle II
$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	**	Unurm	0.03	Belle II
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***		0.03	Belle II
$\phi(D^0 \to K_S^0 \pi^+ \pi^-) \ [^\circ]$	***		4	Belle II
Tau				
$\tau \to \mu \gamma \ [10^{-10}]$	***		< 50	Belle II
$\tau \to e\gamma \ [10^{-10}]$	***	Tau	< 100	Belle II
$\tau \to \mu \mu \mu $ [10 ⁻¹⁰]	***		< 3	Belle II/LHCb

Large data sample = wide range of possibilities.

Belle II Physics book: arXiv:180810567

Belle II computing

• Challenging computing system to handle high event rate

Experiment	Event Size [kB]	Event Pate [Hz]	Data Rate [MD/s]
Belle II (high rate scenario)	300	6,000	1,800
ALICE (HI)	12,500	100	$1,\!250$
ALICE (pp)	1,000	100	100
ATLAS	$1,\!600$	200	320
CMS	1,500	150	225
LHCb	25	2,000	50

• Distributed computing model with most of the Belle II institutions.

Canadian Production in 2018

• Canada produced 13% of MC in 2018 entirely by cloud

•

Canada will store 10% of raw data copy plus processing, starting 2021. Selected Statistics :: Job Group (Tue Feb 05 2019 14:14:08 GMT+0900 (Japan Standard Time) ARC.KIT.de LCG.KEK.jp 📕 LCG.KEK2.jp 📕 ARC.KIT.de 📕 DIRAC.UVic-local.ca 📕 OSG.BNL.us 📕 ARC.DESY.de 📕 LCG.Napoli.it | LCG.KEK2.jp Canada OSG.BNL.us ARC.DESY.d LCG.KEK.jp LCG.Napoli ARC.MPPMU. DIRAC.UVic.ca ARC.SIGNET.SLCG.KMOG.CESNET.cz

BEAST II to study the effect of beam backgrounds:

- Touschek scattering: Coulomb scattering between 2 particles in the same bunch
- Beam-gas: scattering off residual gas atoms in the beam pipe
- Synchotron radiation: photons emitted when electrons are bent by magnetic fields.

https://doi.org/10.1016/j.nima.2018.05.071

Racha Cheaib, University of British Columbia

Central Drift Chamber

- CDC extends to a larger radius (1130 mm compared to 800 mm)
 - 14336 sense wires arranged in 56 layers
 - smaller drift cells, and thinner PID device.
- CDC tracking efficiency significantly influenced by crosstalk between cells.

Current Status (2019):

High current observed in outer CDC layers:

• add H2O, increase gas flow, low voltage operation.

Time Of Propagation Cherenkov Counter

- Consists of 2.6 m quartz radiator bar, micro-channel plate photomultipliers and a frontend readout.
- 2D information about a Cherenkov ring image: time of arrival and impact position.

Current Status:

0.1 0.15

K Efficiency . . .

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5^L

- Performance improving. • Calibration and timing issues.
 - 224 PMTs to be replaced by summer 2020

π Fake Rate Racha Cheaib, University of British Columbia

0.4 0.45 0.5

Belle II 2019

Phase III Data

MC12 0X (10fb⁻¹)

MC12 1X (80fb⁻¹)

MC12 2X (10fb⁻¹)

buc 4 (68pb⁻¹)

0.3 0.35

buc 8 (332*pb⁻¹)

0.2 0.25

S. Longo and J. M. Roney 2018 JINST 13 P03018 arXiv:1801.07774

Electromagnetic CaLorimeter

- Total of 8736 CsI crystals, covering about 90% of the solid angle, with new readout electronics.
- Full cluster reconstruction code and ECL calibration developed by Canadian group.
- Improve PID using Pulse Shape discrimination, by measuring fast scintillation emission ("hadron component") produced by highly ionizing particles

KLM (K_L and μ detector)

- Detect K_L mesons or muons above 0.6 GeV/c
- Use the Belle-era glass-electrode RPCs in the outer 13 layers
- Install scintillators in the 2 innermost barrel layers, due to the higher background levels.

• Established 1.5 T magnetic field

• Readout integration of installed sub-detectors central DAQ in progress.

Racha Cheaib, University of British Columbia

Racha Cheaib, University of British Columbia

Full Event Interpretation T. Keck et al., Comp. Softw. Big Sci. 3:6 (2019) Racha Cheaib, University of British Columbia

Racha Cheaib, University of British Columbia

Vertex Detector

- PiXel Detector: 2 layers of DEPFET (DEPleted Field Effect Transistor) at r = 14 mm and r = 22 mm. Closer to interaction region than Belle.
- Silicon Vertex Detector (SVD):4 layers of double-sided silicon sensors on 6" wafers.
- Larger outer SVD radius 30% efficiency increase $K_S \rightarrow \pi^+\pi^-$ decays inside the SVD.
- Current Status:

Racha Cheaib, University of British Columbia

See talk by Hannah Wakeling! Racha Cheaib, University of British Columbia

- Cosmics
- Beam backgrounds
- \circ ee \rightarrow ee $\gamma(\gamma)$
- ee→ γγ(γ)

Dark Photon Search

- Canadian group leading effort in dark photon search
 - Study of backgrounds from cosmics and γ detection efficiency in the muon system

Belle II has world-leading sensitivity with only 20fb⁻¹

Racha Cheaib, University of British Columbia

Proposed Polarized Electron Beam at SuperKEKB

- Canadian-led effort.
- A measurement of the asymmetry in the cross-section for producing left and right handed particles(ALR) gives access to the neutral current couplings and $\sin^2 \theta_W$
- At Belle II this can be done for e,μ,τ,b,c

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

See talk and poster by Caleb Miller!

Racha Cheaib, University of British Columbia

Summary

- Belle II physics run has started in March 2019.
- Upcoming data set is promising, panorama of results to come.
- STAY TUNED!

Racha Cheaib, University of British Columbia

Beam backgrounds in Phase III

36)

Racha Cheaib, University of Mississippi

Time Of Propagation Cherenkov Counter

Current Status:

• 224 PMTs to be replaced by summer 2020

Year				2019						2020			
Month	1	10-1	2	1-	1-3		4-6	7-9	10-12		1-3	4-6	7-9
Global schedule						Ph	ysics run		Phy	sics	run		
PMT production						Mass production							
(for spares)												
PMT test													
(in B-field) ~	<mark>8</mark> 0 F	м	s					^	-1 <mark>80</mark>	<mark>PM</mark> Ts		
PMT installation											Assem	bly	Inst <mark>all</mark>
Should be ready for the replacement by the end of June 2020.													

Net time for PMT replacement only is 2 weeks.