Production and purification of 225Ra and 225Ac at TRIUMF’s Isotope Separation On-line (ISOL) facility and subsequent radiolabeling studies with α-emitter 225Ac

C. F. Ramogida1,2, A. K. H. Robertson1,3, P. Kunz6, C. Zhang4, U. Jermilova1, J. Lassen6, I. Bratanovic1, V. Brown1, C. Rodriguez-Rodriguez5, L. Southcott1, V. Radchenko1, F. Bénard4, C. Orvig7, P. Schaffer1

1Life Sciences, TRIUMF – Vancouver, Canada; 2Chemistry, Simon Fraser University – Burnaby, Canada; 3Physics & Astronomy, University of British Columbia – Vancouver, Canada; 4Molecular Oncology, BC Cancer Agency – Vancouver, Canada; 5Centre for Comparative Medicine – Vancouver, Canada; 6Accelerator Division, TRIUMF – Vancouver, Canada; 7Chemistry, University of British Columbia – Vancouver, Canada
Nuclear Medicine with Radiometals

Radiometal
- γ or β^+ emitter (imaging)
- α, β^-, or Auger e^- emitter (therapy)

Chelating Ligand

Linker

Targeting vector (e.g.; antibody, peptide)

Cell surface receptor
Cell membrane
Cell cytoplasm
Targeted Radionuclide Therapy

- Targeted, site-specific, and non-invasive

- Alpha (α)
 - Energy: 5–9 MeV
 - Range: < 1 cell

- Beta (β–)
 - Energy: 0.05–2.3 MeV
 - Range: < 10 cells, 50–1000 cells

- Auger electrons

References:
Targeted Alpha-Therapy

α-particles have high LET (~100 keV/µm) and typical range in tissue of 50 – 100 µm (< 10 cell diameters)

LET 0.2 keV/µm

LET 4 – 26 keV/µm

LET 50 - 230 keV/µm
Targeted Alpha-Therapy with Actinium-225 (^{225}Ac)

Actinium-225 (^{225}Ac) has a relatively long half-life ($t_{1/2} = 10\text{ d}$) followed by four fast alpha decays.
Targeted Alpha-Therapy with ^{225}Ac

^{225}Ac labeled prostate specific membrane antigen (PSMA) has shown remarkable therapeutic response in patients – **complete remission**

PET images of the ^{68}Ga-labeled analogue

Targeted Alpha-Therapy with 225Ac: Current Challenges

- Current world-wide production = 1.7 Ci/yr (63 GBq/yr) – enough for < 2000 patients
- No non-radioactive surrogate – chemistry is virtually unexplored
- 225Ac chelation and retention of daughters in vivo remains a challenge

Daughter isotopes are released from chelating agent due to 100 keV recoil energy associated with α emission

A. K. H. Robertson, C. F. Ramogida, P. Schaffer, V. Radchenko, Current Radiopharmaceuticals, 2018, 11, 156.
TRIUMF – Canada’s Particle Accelerator Centre

Isotope production via spallation of uranium, etc… targets

ISAC = Isotope Separator and Accelerator; RIB = Radioactive Ion Beam

500 MeV H⁺ cyclotron
Medical Isotope Production at TRIUMF’s ISAC ISOL facility

Isotope Separator and Accelerator (ISAC)
Isotope Separation On-line (ISOL)
Implantation Station – Ion Collector

Dr. Peter Kunz
Target Dissolution

$^{225}\text{Ra}/^{225}\text{Ac}$ etched off Al stage using 0.1 M HCl

Activity Produced:
^{225}Ra (1.1 – 7.5 MBq)
^{225}Ac (1.4 – 18.0 MBq)

Experiments performed by Dr. Peter Kunz

Efficiency of activity transfer was first studied using low activity (<1 kBq) samples and quantified via alpha spectroscopy.
Target Dissolution

225Ra/225Ac etched off Al stage using 0.1 M HCl

Activity Produced:
225Ra (1.1 – 7.5 MBq)
225Ac (1.4 – 18.0 MBq)

> 99% of all implanted 225Ra/225Ac activity* was retrieved from SEM stage, quantified using **HPGe gamma spectroscopy**
Radiochemical Separation

Step 1: Load

Target sol'n
\(^{225}\text{Ra}/^{225}\text{Ac} \)

\(4 \text{ M HNO}_3 \)

\(2 \text{ mL} \)

DGA, Branched (35 - 40 mg)

Radiochemical Separation

Step 1: Load

Target sol'n $^{225}\text{Ra}/^{225}\text{Ac}$

2 mL

4 M HNO_3

DGA, Branched (35 - 40 mg)

^{225}Ra

Radiochemical Separation

Step 1: Load

Target soln
225Ra/225Ac

2 mL

4 M HNO$_3$

DGA, Branched (35 - 40 mg)

Step 2: Wash

2 mL

4 M HNO$_3$

225Ra

Radiochemical Separation

Step 1: Load
- Target sol’n $^{225}\text{Ra}^{225}\text{Ac}$
- 2 mL 4 M HNO_3
- DGA, Branched (35 - 40 mg)

Step 2: Wash
- 4 M HNO_3
- 2 mL

Step 3: Elute
- 0.05 M HNO_3
- 0.4 mL

^{225}Ra and ^{225}Ac separation diagram.
Radiochemical Separation

Step 1: Load
- Target sol'n $^{225}\text{Ra/}^{225}\text{Ac}$
- 2 mL
- 4 M HNO$_3$
- DGA, Branched (35 - 40 mg)

Step 2: Wash
- 4 M HNO$_3$
- 2 mL

Step 3: Elute
- 0.05 M HNO$_3$
- 0.4 mL

Radiochemical Separation

Step 1: Load
- Target sol’n
 - 225Ra/225Ac
 - 2 mL
 - 4 M HNO$_3$
 - DGA, Branched (35 - 40 mg)

Step 2: Wash
- 4 M HNO$_3$
- 2 mL
- Wait ~ 17 d for 225Ac grow-in; repurify

Step 3: Elute
- 0.05 M HNO$_3$
- 0.4 mL

Dissolution of Al and separation of 225Ra & 225Ac

- 225Ra
- 225Ac
- 211Fr
- 213Bi

References
Summary of A = 225 Production at ISOL

<table>
<thead>
<tr>
<th>Run</th>
<th>Date</th>
<th>Duration [h]</th>
<th>Implantation</th>
<th>RIB Yields [ions/s]</th>
<th>Activity Produced [MBq]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dec '15</td>
<td>13.3</td>
<td>Shorted</td>
<td>3.2×10^7</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8×10^6</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>Apr '16</td>
<td>44.8</td>
<td>Shorted</td>
<td>4.0×10^6</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0×10^7</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>May '16</td>
<td>48.9</td>
<td>Shorted</td>
<td>1.13</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Aug '16</td>
<td>21.6</td>
<td>Good</td>
<td>1.6×10^8</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7×10^7</td>
<td>10.5</td>
</tr>
<tr>
<td>5</td>
<td>Dec '16</td>
<td>45.0</td>
<td>Good</td>
<td>9.3×10^7</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3×10^8</td>
<td>18.0</td>
</tr>
<tr>
<td>6</td>
<td>Apr '17</td>
<td>80.7</td>
<td>Shorted</td>
<td>9.0×10^7</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8×10^6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

aEE = extraction electrode; bLIS = Laser ionisation source; cquantified by HPGe γ-spec
Small library of chelating ligands tested against the current "gold standard"

\[^{225}\text{Ac}^{3+} + ^{225}\text{Ac} \rightarrow \text{Radiolabeled complex} \]

- DOTA (CN = 8)
- \(\text{H}_4\text{octapa} \quad \text{CN} = 8\)
- \(\text{H}_2\text{CHXoctapa} \quad \text{CN} = 8\)
- \(\text{macropa} \quad \text{CN} = 8\)
- \(\text{H}_2\text{bispa}^2 \quad \text{CN} = 8\)

CN = coordination number

%RCY = percent radiochemical yield

Stability of preformed 225Ac-complexes against transchelation to serum proteins.
Stability of preformed ^{225}Ac-complexes in 5-fold excess La$^{3+}$ at ambient temperature

Time (days)

% intact ^{225}Ac-complex

^{225}Ac-macropa
^{225}Ac-DOTA
^{225}Ac-bispa2
^{225}Ac-phospa
^{225}Ac-octapa
^{225}Ac-CHXoctapa

5:1 La$^{3+}$ to ligand ratio
Efforts Towards Targeted Delivery: 225Ac-DOTA-CycMSH

Background: α-Melanoma-stimulating hormone peptide shows high affinity for the melanocortin 1 receptor (MC1R) which is highly expressed in majority of melanomas (skin cancer).

- High receptor binding affinity
- High tumour uptake and tumor to non-target tissue ratios
- Rapid internalization of tracer

DOTA-CycMSH CCZ01048

(F. Bénard, BC Cancer)

PET image of 68Ga-CCZ01048 (S.A. ~200 MBq/nmol) at 2 h p.i. in mice bearing B16F10 tumours

225Ac Radiolabeling of DOTA-CycMSH

DOTA-α−MSH + **225**Ac³⁺ → NH₄OAc buffer 85°C, 45 min

pH 6

iTLC-SG developed in 0.05 M citric acid, pH 5.

82% RCY

225Ac-citrate

R_f = 1.00

225Ac-peptide

R_f = 0.00

Unlabelled **225**Ac³⁺
225Ac Radiolabeling of DOTA-CycMSH

\[
\text{DOTA-\(\alpha\)-MSH} + \text{225Ac}^{3+}, \text{NH}_2\text{OAc buffer, 85°C, 45 min, pH 6} \rightarrow \text{225Ac-peptide}, \text{225Ac-citrate}
\]

- **Rf = 0.00** for 225Ac-peptide
- **Rf = 1.00** for 225Ac-citrate

iTLC-SG developed in 0.05 M citric acid, pH 5.

Corrected RCY 32%

Unlabelled 225Ac³⁺
225Ac Radiolabeling of DOTA-CycMSH

\[\text{DOTA-} \alpha\text{-MSH} + 225\text{Ac}^{3+} \xrightarrow{\text{NH}_4\text{OAc buffer}} 85^\circ\text{C}, 45\text{ min} \xrightarrow{\text{pH 6}} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Molar Activity (kBq/nmol)</th>
<th>Total injected peptide (nmol)</th>
<th>Total injected activity (kBq)</th>
<th>Unlabeled:labeled peptide ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-blocking</td>
<td>> 200</td>
<td>~ 0.1</td>
<td>~ 20</td>
<td>~2,440:1</td>
</tr>
<tr>
<td>Blocking</td>
<td>1.6</td>
<td>~14</td>
<td>~ 22</td>
<td>~305,000:1</td>
</tr>
</tbody>
</table>

Note: 225Ac-CCZ01048 was purified via RP-HPLC (for non-blocking study only) to remove excess unlabeled CCZ01048, and C18 sep-pak to remove free 225Ac^{3+}.
In Vivo Biodistribution of 225Ac-DOTA-CycMSH

Purified radiotracer injected via tail vein into mice bearing melanoma tumours (B16F10 cells); organs harvested at 2 h p.i.

Gamma counter: Window A

Window A = 225Ac energy (60-120 keV); Window B = 221Fr energy (180-260 keV); Window C = 213Bi energy (400-480 keV)
In Vivo Biodistribution of 225Ac-DOTA-CycMSH

Window A (Ac-225) Window B (Fr-221) Window C (Bi-213)

* $p < 0.01$

Window A = 225Ac energy (60-120 keV); Window B = 221Fr energy (180-260 keV); Window C = 213Bi energy (400-480 keV)
Conclusions & Future Work

- **MBq quantities** of 225Ra (1.1 – 7.5 MBq) & 225Ac (1.4 – 18.0 MBq) can be produced via the ISOL technique by irradiation of UC$_x$ targets → isotopically pure 225Ac product

- Simple, one-step purification of 225Ac yields product of high radionuclidic purity, while 225Ra can be stored and used as a generator

- Isolated 225Ac enables preclinical radiolabeling, in vitro, and in vivo studies with a variety of novel chelating ligands and bioconjugates

- Medical Isotope Production via ISOL has shifted towards production of other exotic and medically relevant isotopes
 - $A = 224 \mid ^{212}$Pb via 224Ra (108 ions/s)
 - $A = 165 \mid ^{165}$Er via 165Tm (1010 ions/s)
Future Work

- Designing more effective 225Ac-radiopharmaceuticals: Elucidating the coordination environment of Ac-complexes using β-NMR

β-NMR with liquid samples - Dr. Monika Stachura (TRIUMF)

ISOL will provide access to 230Ac, 234Ac \rightarrow suitable for βNMR measurement
Acknowledgments

TRIUMF
"Team Alpha"
Jason Crawford
John D'Auria
Peter Kunz
Keith Ladouceur
Valery Radchenko
Andrew Robertson
Tom Ruth
Paul Schaffer
Ivica Bratanovic (co-op, UVic)
Victoria Brown (co-op, McMaster)
Una Jermilova (co-op, UBC)
Lily Southcott (co-op, McMaster)

Centre for Comparative Medicine
Cristina Rodriguez-Rodriguez

UBC Chemistry
Prof. Chris Orvig
Sarah Spreckelmeyer
Thomas Kostelnik
Lily Li
Orvig group

BC Cancer
Prof. François Bénard
Chengcheng Zhang
Gemma Dias
Julie Rousseau
Nadine Colpo

Cornell
Prof. Justin Wilson
Nikki Thiele

U. Heidelberg
Prof. Peter Comba
Katharina Rück

10 min documentary highlighting TRIUMF’s efforts to produce ^{225}Ac

rarestdrug.com
TRIUMF’s 500 MeV Isotope Production Facility could be a significant ^{225}Ac source

Current production (worldwide)

<table>
<thead>
<tr>
<th>Isotope Production</th>
<th>Facility</th>
<th>Monthly Production [Ci/month]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{229}Th generators</td>
<td>Breeder reactor</td>
<td>$^{226}\text{Ra}(n, 2n)^{225}\text{Ra}$</td>
</tr>
<tr>
<td></td>
<td>$^{226}\text{Ra}(\gamma)^{225}\text{Ra}$</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>e⁻ accelerator</td>
<td>$^{226}\text{Ra}(\gamma)^{225}\text{Ra}$</td>
</tr>
<tr>
<td></td>
<td>low-energy p⁺ cyclotron</td>
<td>$^{226}\text{Ra}(p, 2n)^{225}\text{Ac}$</td>
</tr>
<tr>
<td></td>
<td>high-energy p⁺ accelerator</td>
<td>$^{232}\text{Th}(p, x)^{225}\text{Ac}$</td>
</tr>
</tbody>
</table>

Potential future production

Theoretical maximum ^{225}Ac monthly production [Ci/month] for a single facility

\[^{225} \text{Ac} \] must be purified from thorium and many other elements.

<table>
<thead>
<tr>
<th>Elements with isotopes in thorium</th>
</tr>
</thead>
<tbody>
<tr>
<td>target 1 week after EOB</td>
</tr>
</tbody>
</table>

- challenging purification chemistry
- complex radiation hazards
Target Removal
Targeted Alpha-Therapy with ^{225}Ac

^{225}Ac labeled prostate specific membrane antigen (PSMA) has shown remarkable therapeutic response in patients – complete remission

PET images of the ^{68}Ga-labeled analogue