Probing the Strangeonium Hybrid Content of the Y(2175) Using Gaussian Sum-Rules

Derek Harnett

J. Ho, R. Berg, W. Chen, T. G. Steele, and D. Harnett (2019) [arxiv: 1905.12779]

The Y(2175) (i.e., $\varphi(2170)$) was seen by BaBar in 2006 in initial state radiation processes.

- BaBar [Aubert PRD74

 (2006)]; Belle [Ablikim PRL100 (2008)]; BES
 [Shen PRD80 (2016)]; BES III [Ablikim PRD91 (2017)]
- $M = (2188 \pm 10) \text{ MeV}$
- $\Gamma = (83 \pm 12) \text{ MeV}$
- $I^{G}(J^{PC}) = 0 (1 -)$

 $e^+e^-\rightarrow \phi(1020)f_o(980)\rightarrow K^+K^-\pi^+\pi^$ events vs. invariant mass [Aubert PRD74 (2006)].

The width of the Y(2175) does not agree with quark model meson predictions.

- $Y(2175) \rightarrow \varphi(1020) f_0(980)$ implies $s\bar{s}$ component of the Y(2175).
- Quark model ss mass predictions [Godfrey PRD32 (1985)]: $3 \, {}^{3}S_{1}$ or $2 \, {}^{3}D_{1}$?
- Width predictions (${}^{3}P_{0}$ model) too large.
 - $3 \, {}^{3}S_{1}$: $\Gamma = 378 \, \text{MeV} \, [\text{Barnes PRD68 (2003)}]$
 - $2 \, ^{3}D_{1}$: $\Gamma = 167 \, \text{MeV} \, [\text{Ding PLB657 (2007)}]$

Perhaps the Y(2175) is an outside-the-quark-model resonance.

- Hybrid meson (sgs)
 - Laplace sum-rules: $M = (2.9 \pm 0.3)$ GeV [Govaerts NPB262 (1985)]
 - flux tube model: M = 2.1-2.2 GeV [Barnes PRD52 (1995)]
 - lattice QCD: M = 2.1-2.5 GeV [Dudek PRD84 (2011)]
- Diquark-antidiquark ([ss][ss])
 - Laplace sum-rules: $M_1 = (2.34 \pm 0.17) \text{ GeV } \& M_2 = (2.41 \pm 0.25) \text{ GeV } [Chen PRD98 (2018)]$
- Baryon-antibaryon molecule $(\Lambda \overline{\Lambda})$
 - $-2m_{\Lambda} = 2.231 \text{ GeV}$
 - chromomagnetic interaction model: M = 2.184 GeV [Abud PRD81 (2010)]
 - one-boson exchange potential: M = 2.149-2.177 GeV [Zhou PRD987 (2013)]

Decay modes and rates will be crucial to determining the nature of the Y(2175).

- *sgs*:
 - KK, K*K* forbidden [Ding PLB 650 (2007)]
- [ss][ss]:
 - $\phi \eta$, $\phi \eta$ dominant [Ding PLB 650 (2007)]?
 - $\varphi f_0(980)$, $h_1\eta$, $h_1\eta'$ dominant [Ke (2018)]?
- ^√/:
 - KK dominant [Dong PRD 96 (2017)]

	φ(2	2170) DECAY MODES	5
	Mode		Fraction (Γ_i/Γ)
Γ_1	e^+e^-		seen
Γ_2	$\phi \eta$		
Γ_3	$\phi \pi \pi$		
Γ_4	$\phi f_0(980)$		seen
Γ_5	$K^{+}K^{-}\pi^{+}\pi^{-}$		
Γ_6	$K^{+}K^{-}f_{0}(980) \rightarrow F$	$K^{+}K^{-}\pi^{+}\pi^{-}$	seen
Γ ₇	$K^{+}K^{-}\pi^{0}\pi^{0}$		
Γ ₈	$K^{+}K^{-}f_{0}(980) \rightarrow F$	$K^{+}K^{-}\pi^{0}\pi^{0}$	seen
Γ9	$K^{*0} K^{\pm} \pi^{\mp}$		not seen
Γ ₁₀	$K^*(892)^0\overline{K}^*(892)^0$		not seen

The *Y(2175)* decay data is incomplete—can't draw definitive conclusions.

We studied the strangeonium hybrid content of the Y(2175) using Gaussian sum-rules.

Gaussian sum-rules

• well-suited to multi-resonance analyses

Improved field theory

- higher dimension condensate terms
- strange quark mass corrections to perturbation theory

Updated QCD parameters

- strong coupling, α_s
- four-dimensional gluon condensate $<\alpha_s G^2>$

We probe light strangeonium 1⁻ hybrids with a diagonal two-point correlator.

We compute the correlator, $\Pi(q^2)$, within the operator product expansion.

$$\Pi^{\rm QCD}(q^2) = \begin{array}{c} & + & - & - \\ & + & - \\ \end{array} + \begin{array}{c} & + \\ \end{array} +$$

Dispersion relations relate QCD to hadron physics, i.e., quark-hadron duality.

QCD sum-rules are transformed dispersion relations.

Predictions are extracted as best-fit values between QCD and hadron physics.

hadronic couplings $\rho^{\rm had}(t) = f_1^2 \delta(t-m_1^2) + f_2^2 \delta(t-m_2^2)$ double narrow resonance model $\mathbf{m_1} = \mathbf{2.188~GeV}$

$$G(\hat{s}, \tau, s_0) = \frac{1}{\sqrt{4\pi\tau}} \left(f_1^2 \exp\left(\frac{-(\hat{s} - m_1^2)^2}{4\tau}\right) + f_2^2 \exp\left(\frac{-(\hat{s} - m_2^2)^2}{4\tau}\right) \right)$$

Extract
$$s_0, m_2, r \equiv \frac{f_1^2}{f_1^2 + f_2^2}, \frac{f_2^2}{f_1^2 + f_2^2}.$$

We find an essentially decoupled Y(2175) and a heavy second resonance.

Extracted hadronic parameters:

$$s_0 = (9.7 \pm 1.0) \text{ GeV}^2$$

 $m_2 = (2.90 \pm 0.16) \text{ GeV}$
 $r \equiv \frac{f_1^2}{f_1^2 + f_2^2} \le 0.033$

A comparison of QCD (blue curve) and fitted (orange dots) normalized Gaussian sum-rules.

As an independent check on our error bounds, we plot $r \& m_2 \text{ vs. } s_o$.

Predicted relative couping, r, vs. continuum threshold, s_o . The shaded region represents the uncertainty in s_o .

Predicted heavy resonance mass, m_2 , vs. continuum threshold, s_o . The shaded region represents the uncertainty in s_o .

A sum-rules study of the strangeonium hybrid content of the Y(2175) gives...

- a relative hadronic coupling r consistent with zero
- a heavy 2.9 GeV resonance in agreement with [Govaerts NPB262 (1985)]
- a preference for a $[ss][\overline{ss}]$ or $\Lambda \overline{\Lambda}$ interpretation.