Improvement of missing transverse momentum reconstruction for ATLAS experiment at LHC

Zhelun Li

1Department of Physics and Astronomy
University of Victoria

2019/06/03
Outline

Missing Transverse Momentum (MET)
 The importance of MET
 Measuring MET

New algorithm for MET determination
 Physics constraints
 Input parameters

Performance Evaluation
 Comparison on data and MC samples of $pp \rightarrow Z^0 + \text{jets}$ with $Z^0 \rightarrow \mu^+ \mu^-$
 Comparison on $pp \rightarrow t\bar{t}$ sample
 Conclusion
Many interesting physics processes involve elusive particles that escape detection: Neutrino, SUSY particles, dark matter candidates, etc.

The missing transverse energy (MET or $\vec{E}_{T}^{\text{miss}}$) measures the imbalance of momentum in the transverse plane, which is sensitive to non-interacting particles.

The transverse plane is defined to be the plane perpendicular to the beam line. The azimuthal angle in the transverse plane is ϕ and the polar angle from the beam axis is θ. In practice the pseudorapidity $\eta = -\ln \tan(\frac{\theta}{2})$ is used, since particle production is nearly uniform in eta
Improvement of missing transverse momentum reconstruction for ATLAS experiment at LHC

Zhelun Li

Missing Transverse Momentum (MET)

The importance of MET

Measuring MET

New algorithm for MET determination

Physics constraints

Input parameters

Performance Evaluation

Comparison on data and MC samples of \(pp \to Z^0 + \text{jets with } Z^0 \to \mu^+ \mu^- \)

Comparison on \(pp \to t\bar{t} \) sample

Conclusion

MET

- The LHC collides bunches of protons. Each bunch crossing produces many pp collisions. The hardest collision is called hard scatter, and others are referred to as pile-up interactions.
- Each collision location is called a primary vertex. The number of primary vertices \((N_{pv}) \) measures the pile-up activities.
- Charged particles can be associated with their vertices using their tracks.
MET measures the imbalance of the hard scatter with two inputs:

- **hard term**: Made of high p_T reconstructed objects that passed selections. (Jets, e^\pm, μ^\pm and etc) These are carefully calibrated objects used by all MET algorithms.

- **soft term**: Low p_T hard scatter signals then contribute to the soft term.

\[
\vec{E}_T^{\text{miss}} = - \sum_{j \in \{\text{hard objects}\}} \vec{p}_T^{\text{miss},j} - \sum_{i \in \{\text{soft signals}\}} \vec{p}_T^{\text{miss},i}
\] (1)
Improvement of missing transverse momentum reconstruction for ATLAS experiment at LHC

Zhelun Li

Missing Transverse Momentum (MET)

The importance of MET

Measuring MET

New algorithm for MET determination

Physics constraints

Input parameters

Performance Evaluation

Comparison on data and MC samples of $pp \rightarrow Z^0 + \text{jets}$ with $Z^0 \rightarrow \mu^+ \mu^-$

Conclusion

The two soft term options for MET calculation

Track Soft Term (TST):

- Using only hard scatter tracks.
- **Pro:** Insensitive to pile-up; only hard scatter tracks are used.
- **Con:** Ignores neutral particles and charged particles with $|\eta| > 2.4$

Cluster Soft Term (CST):

- Summing over all calorimeter energy deposited outside hard objects.
- **Pro:** Includes charged and neutral particles. Covers $|\eta| > 2.4$
- **Con:** Includes pile-up particles \rightarrow Sensitive to pile-up.
PUfit aims to add neutral particles to TST along with physics constraints to reduce pileup dependence.

PUfit is adapted from a similar algorithm used in the ATLAS trigger.

There are two parts in the PUfit soft term \vec{E}_T^{PST}:

$$\vec{E}_T^{PST} = \vec{E}_T^{TST} + \vec{E}_T^{PAT}$$

\vec{E}_T^{TST} is the Track Soft Term and \vec{E}_T^{PAT} is the Pileup-imbalance Adjustment Term.

The PAT term is determined by a χ^2 fit using the following two constraints:

1. Pileup vertices should not produce any invisible particles

2. The pile-up energy density is nearly uniform in the $\eta - \phi$ plane.
Pileup-imbalance Adjustment Term \vec{E}_{PAT}

PAT measures the Pileup imbalance in the PU distribution.

- First, determine the average energy density $\langle \rho \rangle$ outside hard objects in the calorimeter.

- Parameters \mathcal{E}_k are introduced to represent the PU energy under HS jets. They are determined by the fit.

- The Pileup-imbalance Adjustment Term is:

\[
\vec{E}^{PAT}_T = \sum_{k=1}^{J} (\mathcal{E}_k - \langle \rho \rangle A_k) \frac{\vec{p}_{T_k}^{jet}}{p_{T_k}^{jet}}
\]

where A_k is the area of the k-th jet.
Performance on pp → Z⁰ + jets

- Data used from 2017 ATLAS run at 13TeV. Fully simulated MC events are also used.
- Z → μ⁺μ⁻ decays are selected based on muon trigger, muon ID and also the invariant mass of μ⁺μ⁻.
- Muons leave negligible energy in the calorimeter, resulting in an imbalance. The imbalance should mirror the Zp_T measured using muon tracks.
- MET resolution and scale are tested in both data and MC.
pp → Z⁰ + jets sample

- Zero jet events are not used since PST and TST soft terms are equivalent in these events.
We are making a correction (PAT) that is of comparable magnitude to TST.

- **TST**: track soft term; **CST**: cluster soft term
- **PAT**: The correction; **PST**: PUfit soft term (TST+PAT)

![Graph showing MET distributions](image)

- mean=16.9; σ=14.3
- mean=13.0; σ=14.0
- mean=9.50; σ=5.99
- mean=22.6; σ=13.8

« ATLAS work in progress »

Z+jets (data17;13 TeV)
MET resolution from $pp \rightarrow Z^0 + \text{jets}$

- Ex and Ey are independent. So $\sigma_{\text{MET}} = \sigma_{Ex} = \sigma_{Ey}$
- Resolutions of PST MET and TST MET are similar. Both better than the CST MET.

![Graph showing MET resolution for different MET types (PST, TST, CST) with data from 2017-13 TeV Z+jets.](chart.png)
MET scale from $pp \rightarrow Z^0 + \text{jets}$

- The magnitude of the measured MET should on average correspond to that of the true MET.
- The parallel scale difference (PSD) should ideally be 0.

$$\text{PSD} = \vec{E}_{\text{miss}} \cdot \vec{E}_Z - |\vec{E}_Z|$$

- The errorbar is the RMS width in each bin.
Improvement of missing transverse momentum reconstruction for ATLAS experiment at LHC

Zhelun Li

Missing Transverse Momentum (MET)
The importance of MET
Measuring MET
New algorithm for MET determination
Physics constraints
Input parameters
Performance Evaluation
Comparison on data and MC samples
Conclusion

MET resolution on $pp \rightarrow t\bar{t}$ Monte Carlo

- $t\bar{t}$ has a higher jet multiplicity.
- PST MET and CST MET are similar. Get worse than TST MET at large N_{pv}.
- Still under investigation.

Resolution against N_{pv}

« ATLAS work in progress »

ttbar; MC16; 13 TeV
Conclusion

- PUfit uses both charged and neutral signals to determine the soft term, and it was tested in both Z+jets and ttbar eventys.
- It achieves similar resolution compared to the TST MET and much better than the CST MET in Z+jets events.
- More investigations needed for the $t\bar{t}$ sample.
- Further analysis is needed with high pile-up MC samples.
MET resolution on pp → \(Z^0 +\) jets Monte Carlo

- The resolution is based on measured versus true MET.
- Similar to results on data: PST similar to TST, better than CST. A consistent improvement of 1 GeV between 15 < \(N_{pv}\) < 35.
Improvement of missing transverse momentum reconstruction for ATLAS experiment at LHC

Zhelun Li

Backup slides
Z + jets Monte Carlo
$t\bar{t}$ multiplicities
PUfit constraints
The fit

$pp \rightarrow t\bar{t}$ sample

Hard objects distribution

« ATLAS work in progress »

Ttbar; MC16; 13 TeV
PUfit determines \mathcal{E} by two constraints:

- Pileup vertices should not produce any real $\vec{E}_{T}^{\text{miss}}$.
- Pileup energies under HS jets (\mathcal{E}_k) are close to the average pileup ($<\rho> A_k$)

For example, we can formulate the first constraint by:

$$\sum_{\text{clus}} \vec{E}_{Tj} - \sum_{j} \vec{p}_{Tj}^{\text{HS}} + \sum_{k} \vec{E}_{Tk} = 0$$

where the first term sums over all clusters outside HS jet and \vec{p}_{Tj}^{HS} are momentum vectors of HS tracks.
The final version of PUfit only involve one more change: adopting PFlow. Instead of subtracting HS track Pt manually, PFlow objects were use instead since they offer better energy subtraction precision.

Previously we had:

\[\sum_{j} \vec{E}_{Tj} - \sum_{j} \vec{p}_{Tj}^{HS} + \sum_{k} \vec{E}_{Tk} = 0 \]

Now it becomes:

\[\sum_{j} \vec{E}_{Tj} + \sum_{j} \vec{E}_{Tj} + \sum_{k} \vec{E}_{Tk} = 0 \]

where \(PFO_N \) is neutral PFlow objects outside HS jets, \(PFO_{C,PU} \) are non-HS charged PFlow objects outside HS jets.
Formulating the constraint

So we can encode this constraint in a χ^2 function:

$$\chi^2(\mathcal{E}_T^1, ..., \mathcal{E}_T^m) = \Delta^T V^{-1} \Delta$$

Δ is defined as:

$$\Delta = \left(\begin{array}{c}
\sum_{j} PFO_N \vec{E}_T^j \cos \phi_k + \sum_{j} PFO_{C,PU} \vec{E}_T^j \cos \phi_k + \sum_{k=1}^{n_J} \mathcal{E}_T^k \cos \phi_k \\
\sum_{j} PFO_N \vec{E}_T^j \sin \phi_k + \sum_{j} PFO_{C,PU} \vec{E}_T^j \sin \phi_k + \sum_{k=1}^{n_J} \mathcal{E}_T^k \sin \phi_k \\
\mathcal{E}_T^1 - \langle \rho \rangle A_1 \\
\vdots \\
\mathcal{E}_T^{n_J} - \langle \rho \rangle A_{n_J} \end{array} \right)$$

(3)
Fit

The covariance matrix is given by:

\[
V = \begin{pmatrix}
V_{11} & V_{12} & 0 & 0 & \ldots & 0 \\
V_{21} & V_{22} & 0 & 0 & \ldots & 0 \\
0 & 0 & V^J & 0 & \ldots & 0 \\
0 & 0 & 0 & V^J & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & V^J
\end{pmatrix}
\]

where \(V^J \) is defined as the variance of the PU under jets and the upper 2 \(\times \) 2 submatrix is given by

\[
\begin{pmatrix}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{pmatrix}
= \begin{pmatrix}
\sum_{j=1}^{O} \sigma_j^2 \cos^2 \phi_j & \sum_{j=1}^{O} \sigma_j^2 \cos \phi_j \sin \phi_j \\
\sum_{j=1}^{O} \sigma_j^2 \cos \phi_j \sin \phi_j & \sum_{j=1}^{O} \sigma_j^2 \sin^2 \phi_j
\end{pmatrix}
\]

where \(\sum_{j}^{O} = \sum_{j}^{\text{PFO}_N} + \sum_{j}^{\text{PFO}_{C,PU}} \)