A Finite Size Kosterlitz-Thouless Transition in Fe/W(001) Ultrathin Films

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B 99, 125425.

Presentation Outline

- 1. Kosterlitz Thouless Transition in a Finite 2D XY System
- 2. Growth and Characterization of Fe/W(001) Films
- 3. Analysis of Magnetic Susceptibility Signals from Independently Grown Films

Magnetism in Ultrathin Films

- Ultrathin films (a few monolayers thick) are effectively two dimensional
- For 2D systems where anisotropy traps magnetic moments in-plane, the spins can be modeled after the "**2D XY" model**
- ► Spin configuration energy given by $H = -J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$

Square lattice of spins in the 2D XY model.

- **Mermin-Wagner Theorem**: *A 2D isotropic array of in-plane spins cannot order at finite temperature.*
	- ▶ Spin waves fluctuations prevent ordering at all non-zero temperatures
	- ▶ i.e. no 2nd order phase transition

The Kosterlitz-Thouless (KT) Transition

- **Kosterlitz and Thouless (1974)**: 2DXY model may have phase transition involving excitations which preserve continuous symmetry
	- Topological phase transition involving vortices and antivortices
	- Above critical temperature T_{KT} , vortex pairs separate into free vortices
	- Above T_{KT} , correlation length and magnetic susceptibility possess unique exponential form

Vortex-Antivortex pair in the 2D XY model.

B. Skinner, (2015). Retrieved from: https://www.ribbonfarm.co m/2015/09/24/samuelbecketts-guide-to-particlesand-antiparticles/

Finite-Size Effects and Anisotropy in the KT Transition

 Diverging correlation length becomes equal to system size at $T_c(L)$

 $\xi(T_{\mathcal{C}}(L)) = L$

Large separation between T_{KT} and $T_C(L)$, creating a broad peak

$$
\frac{T_c(L) - T_{KT}}{T_{KT}} = \frac{b^2}{\left(\ln L\right)^2}
$$

 Anisotropy (not present in figure) leads to formation of magnetic domains/domain walls

Ultrathin Fe/W(001) Films

- **▶ 3-4 monolayers of iron**
- Deposited via molecular beam epitaxy under UHV
- Tungsten (001) substrate as square template
	- ▶ 4-fold easy axes
- Confirm epitaxial growth with LEED
- Confirm thickness with AES

LEED image at 118eV from 3.6ML film

AC Magnetic Susceptibility of Fe/W(100)

- Measured using Surface Magneto-optic Kerr Effect (SMOKE)
	- Rotation in polarization directly proportional to change in magnetization

∝

 $\overline{\Phi}_{\!K}$

 \overline{H}

- Use oscillating H to measure AC susceptibility
- AC optical signal collected using lock-in amplifier
	- Imaginary component due to dissipation effects

Schematic diagram of the SMOKE apparatus. The initial polarizer and analyzing polarizer are nearly perpendicular.

AC Susceptibility Measurements

 Different films exhibit different susceptibility signals

I Type I

- Small $Re(\chi)$, Very weak $Im(\chi)$
- Most closely resemble shape predicted by KT theory

 \blacktriangleright Type II

Large $Re(\chi)$ and $Im(\chi)$

 \blacktriangleright Regular, symmetric shape

Phys. Rev. B **99**, 125425.

Type I Signals: Fitting to KT Theory

High temp tail region fit to:

$$
\chi(T) = \chi_0 \exp\left[\frac{B}{\left(\frac{T}{T_{KT}} - 1\right)^a}\right]
$$

- Fitting region restricted to where $Im(\chi)$ is small (linear susceptibility)
- 3 parameter fit: find B, T_{KT} , and χ_0 for a series of a values

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B **99**, 125425.

Type I Fitting Summary

Interpolation Curves of B(a) for Type I Signals from 8 Different Films

Phys. Rev. B **99**, 125425.

Type II Fitting Summary

Interpolation Curves of B(a) for Type II Signals from 8 Different Films

- 10 5.5 8 4.5 3.5 6 B 2.5 1.5 4 0.46 0.48 0.50 0.52 0.0 0.5 \blacksquare For $3.2 < B < 3.8$, $a = 0.50 \pm 0.03$ J. Atchison, A. Bhullar, B. Norman, and D. Venus.
- The high temperature tail of Type II signals can be analyzed as well
- Fitting region restricted to where $Im(\chi)$ is small (linear susceptibility)

- When $a = 1/2$, $B = 3.46 \pm 0.08$
-

Phys. Rev. B **99**, 125425.

 0.54

15

Conclusions

- \blacktriangleright First demonstration of the exponential behaviour of the magnetic susceptibility in a real system
- Magnetic susceptibility measurements on Fe/W(001) films provide persuasive evidence of a finite size KT transition
	- Agreement between fitted values and KT theory
	- The fitted T_{KT} is substantially below the peak, which is in agreement with finite size KT theory
	- The separation between T_{KT} and $T_C(L)$ gives an effective size of L- μ m, consistent with domain size

Fe/W(001) Film Growth

- Substrate is a square lattice (W(001) surface)
- Only the first 2ML are stable at 600K+
	- Allows for film thickness calibration using Auger Electron Spectroscopy (AES)
	- \blacktriangleright "Kink" due to islands covering less area

LEED image at 118eV from 3.6ML film

Calculation of System Size

$$
\xi(T) \sim \exp\left[\frac{b}{\sqrt{\frac{T}{T_{KT}}} - 1}\right]
$$

$$
\chi(T) \sim \xi^{2-\eta}
$$

$$
\chi(T) = \chi_0 \exp\left[\frac{B}{\left(\frac{T}{T_{KT}} - 1\right)^a}\right]
$$

$$
B=(2-\eta)b
$$

$$
\eta = 1/4 \text{ at } T_{KT}
$$

Type I Signals: Fitting Region

- **Look at parameter B and the "goodness of fit"** χ^2 as a function of T_{min} and T_{max}
- T_{min} and T_{max} should fall in region where fitted parameters don't depend on them
- Choose largest reasonable region to maximize number of data points
- T_{min} exists due to finite size effects stopping divergence
- T_{max} exists due to limits in signal-to-noise

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B **99**, 125425.

436

438

 T_{max} (K)

440

 1.7

442

 3.0

434

Type I Signals: Power Law Fit

Data fit to a power law

 $\chi(T) = \chi_0 \left(\frac{T}{T} \right)$ T_{γ} − 1 $-\gamma$

- Statistical χ^2 is no better or worse
- Fitted parameters are unphysical
	- $\gamma = 3.61 \pm 0.08$
		- ▶ does not match any known universality class
	- $T_v = 389.7 \pm 0.5K$
		- \blacktriangleright 12K below the peak here, compared to ~2K below in 2D Ising system Fe/W(110)
- Above parameters are representative of a larger data set J. Atchison, A. Bhullar, B. Norman, and D. Venus.

Phys. Rev. B **99**, 125425.

Type II Signals: Low Field Strength

- Separation of a Type II peak into two peaks at low field
	- Separated by $~10K$
- We speculate that high T peak is vortex transition, low T peak is domain wall transition
- Type II signals could be a Type I signal plus domain wall contributions

Type II Signals: High Temperature Behaviour

- From a single film, we've observed Type II -> Type I signal after strong field pulse
- \blacktriangleright Curve fitting to high T tail resulted in consistent values

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B **99**, 125425.

Research Idea II: Domain Component

- Type II signals have large Re and Im components
	- Domain wall motion could be responsible
- Domain structure can be controlled
	- Film thickness
	- Film orientation (azimuthal rotation)
	- Strong field pulse
- Look for change to low T behaviour but same high T behaviour
	- ▶ We've observed Type II -> Type I signal after strong field pulse

Research Idea III: System Relaxation

- **In 2DXY model, approach to equilibrium near** critical point may depend on initial state
	- \blacktriangleright Free vortices and bound pairs have different relaxation
- Investigate system relaxation in various ways
	- \blacktriangleright Heat to different points near critical temp and observe relaxation
	- \blacktriangleright Heating vs cooling, heating/cooling rate, different field strengths

Finite-Size Effects and Anisotropy

- Logarithmic divergence of 2D spin wave fluctuations with system size, N
	- **Set Spin-waves only disrupt long range order for systems** much larger than are experimentally feasible
	- Allows for a finite magnetization, but with no fixed direction
- **Anisotropy can trap the finite magnetization** along a specific direction
	- Allows for measurement of finite magnetization at non-zero temperatures

$$
\langle |M| \rangle \propto \left(\frac{1}{2N}\right)^{\frac{k_BT}{8\pi J}} = \left(\frac{1}{2N}\right)^{\frac{1}{16}}
$$

 $\langle M \rangle = 0$

 $\langle |M| \rangle \neq 0$

Research Idea I: Nature of Double Peaks

Double peak observed in Type II signals at low field

- \blacktriangleright What is the physical origin?
- \blacktriangleright High T peak is vortex binding/unbinding?
- Low T peak is melting of domain walls?
- Find fitted parameters T^* , T_{KT}
	- Compare to peak locations

$$
\frac{T^* - T_{KT}}{T_{KT}} = \frac{b^2}{4(\ln L)^2} \qquad B = (2 - \eta)b
$$

$$
(T_{C}(L) - T_{KT}) = 4(T^* - T_{KT})
$$

$$
\chi(T)=\chi_0\exp
$$

