A Finite Size Kosterlitz-Thouless Transition in Fe/W(001) Ultrathin Films

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B 99, 125425.

Presentation Outline

- 1. Kosterlitz Thouless Transition in a Finite 2D XY System
- 2. Growth and Characterization of Fe/W(001) Films
- 3. Analysis of Magnetic Susceptibility Signals from Independently Grown Films

Magnetism in Ultrathin Films

- Ultrathin films (a few monolayers thick) are effectively two dimensional
- For 2D systems where anisotropy traps magnetic moments in-plane, the spins can be modeled after the "2D XY" model
- Spin configuration energy given by $H = -J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$

Square lattice of spins in the 2D XY model.

- Mermin-Wagner Theorem: A 2D isotropic array of in-plane spins cannot order at finite temperature.
 - Spin waves fluctuations prevent ordering at all non-zero temperatures
 - i.e. no 2nd order phase transition

The Kosterlitz-Thouless (KT) Transition

- Kosterlitz and Thouless (1974): 2DXY model may have phase transition involving excitations which preserve continuous symmetry
 - Topological phase transition involving vortices and antivortices
 - > Above critical temperature T_{KT} , vortex pairs separate into free vortices
 - Above T_{KT}, correlation length and magnetic susceptibility possess unique exponential form

Vortex-Antivortex pair in the 2D XY model.

B. Skinner, (2015). Retrieved from: https://www.ribbonfarm.co m/2015/09/24/samuelbecketts-guide-to-particlesand-antiparticles/

Finite-Size Effects and Anisotropy in the KT Transition

Diverging correlation length becomes equal to system size at T_c(L)

 $\xi(T_C(L)) = L$

• Large separation between T_{KT} and $T_C(L)$, creating a broad peak

$$\frac{T_c(L) - T_{KT}}{T_{KT}} = \frac{b^2}{\left(\ln L\right)^2}$$

 Anisotropy (not present in figure) leads to formation of magnetic domains/domain walls

Ultrathin Fe/W(001) Films

- 3-4 monolayers of iron
- Deposited via molecular beam epitaxy under UHV
- Tungsten (001) substrate as square template
 - 4-fold easy axes
- Confirm epitaxial growth with LEED
- Confirm thickness with AES

LEED image at 118eV from 3.6ML film

AC Magnetic Susceptibility of Fe/W(100)

- Measured using Surface Magneto-optic Kerr Effect (SMOKE)
 - Rotation in polarization directly proportional to change in magnetization

 ∞

Η

- Use oscillating H to measure AC susceptibility
- AC optical signal collected using lock-in amplifier
 - Imaginary component due to dissipation effects

Schematic diagram of the SMOKE apparatus. The initial polarizer and analyzing polarizer are nearly perpendicular.

AC Susceptibility Measurements

Different films exhibit different susceptibility signals

Type I

- Small $Re(\chi)$, Very weak $Im(\chi)$
- Most closely resemble shape predicted by KT theory

Type II

• Large $Re(\chi)$ and $Im(\chi)$

Regular, symmetric shape

Phys. Rev. B 99, 125425.

Type I Signals: Fitting to KT Theory

High temp tail region fit to:

$$\chi(T) = \chi_0 \exp\left[\frac{B}{\left(\frac{T}{T_{KT}} - 1\right)^a}\right]$$

- Fitting region restricted to where
 Im(χ) is small (linear susceptibility)
- > 3 parameter fit: find B, T_{KT} , and χ_0 for a series of a values

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B **99**, 125425.

Type I Fitting Summary

Interpolation Curves of B(a) for Type I Signals from 8 Different Films

Phys. Rev. B 99, 125425.

0.52

0.54

15

10 Fitted values of *B* for different chosen values of a8 KT theory independently predicts 4. a = 1/2 and 3.2 < B < 3.83.5 For 6 curves in the box: 6 B 2.5▶ When a = 1/2, $B = 3.5 \pm 0.2$ 1.5 0.46 0.48 4 0.50 For 3.2 < B < 3.8, $a = 0.50 \pm 0.03$ $\xi(T_C(L)) = L = \exp$ 0.0 0.5 1.0 \blacktriangleright *L*~ μm , approx. size of mag. domains J. Atchison, A. Bhullar, B. Norman, and D. Venus.

Type II Fitting Summary

Interpolation Curves of B(a) for Type II Signals from 8 Different Films

- 10 5.5 8 4.5 3.5 6 B 2.5 1.5 4 0.46 0.48 0.50 0.52 0.54 0.5 0.0 1.5 J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B 99, 125425.
- The high temperature tail of Type II signals can be analyzed as well
- Fitting region restricted to where $Im(\chi)$ is small (linear susceptibility)

- When a = 1/2, $B = 3.46 \pm 0.08$
- For 3.2 < B < 3.8, $a = 0.50 \pm 0.03$

Conclusions

- First demonstration of the exponential behaviour of the magnetic susceptibility in a real system
- Magnetic susceptibility measurements on Fe/W(001) films provide persuasive evidence of a finite size KT transition
 - Agreement between fitted values and KT theory
 - The fitted T_{KT} is substantially below the peak, which is in agreement with finite size KT theory
 - The separation between T_{KT} and $T_{C}(L)$ gives an effective size of $L \sim \mu m$, consistent with domain size

Fe/W(001) Film Growth

- Substrate is a square lattice (W(001) surface)
- Only the first 2ML are stable at 600K+
 - Allows for film thickness calibration using Auger Electron Spectroscopy (AES)
 - "Kink" due to islands covering less area

LEED image at 118eV from 3.6ML film

Calculation of System Size

$$\xi(T) \sim \exp\left[\frac{b}{\sqrt{\frac{T}{T_{KT}} - 1}}\right]$$

$$\chi(T) \sim \xi^{2-\eta}$$

$$\chi(T) = \chi_0 \exp\left[\frac{B}{\left(\frac{T}{T_{KT}} - 1\right)^a}\right]$$

$$B = (2 - \eta)b$$

$$\eta = 1 \backslash 4$$
 at T_{KT}

Type I Signals: Fitting Region

- Look at parameter *B* and the "goodness of fit" χ^2 as a function of T_{min} and T_{max}
- T_{min} and T_{max} should fall in region where fitted parameters don't depend on them
- Choose largest reasonable region to maximize number of data points
- T_{min} exists due to finite size effects stopping divergence
- T_{max} exists due to limits in signal-to-noise

438

 T_{max} (K)

J. Atchison, A. Bhullar, B. Norman, and D. Venus.

Phys. Rev. B 99, 125425.

440

1.7

442

3.0

434

436

Type I Signals: Power Law Fit

Data fit to a power law

- Statistical χ^2 is no better or worse
- Fitted parameters are unphysical
 - ► $\gamma = 3.61 \pm 0.08$
 - does not match any known universality class
 - $T_{\gamma} = 389.7 \pm 0.5 \text{K}$
 - 12K below the peak here, compared to ~2K below in 2D Ising system Fe/W(110)
- Above parameters are representative of a larger data set

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B **99**, 125425.

Type II Signals: Low Field Strength

- Separation of a Type II peak into two peaks at low field
 - Separated by ~10K
- We speculate that high T peak is vortex transition, low T peak is domain wall transition
- Type II signals could be a Type I signal plus domain wall contributions

Type II Signals: High Temperature Behaviour

- From a single film, we've observed Type II -> Type I signal after strong field pulse
- Curve fitting to high T tail resulted in consistent values

	В	<i>T_{KT}</i> (K)
Type I	3.6 ± 0.3	325 ± 2
Type II	3.6 ± 0.3	320 ± 2

J. Atchison, A. Bhullar, B. Norman, and D. Venus. Phys. Rev. B **99**, 125425.

Research Idea II: Domain Component

- Type II signals have large Re and Im components
 - Domain wall motion could be responsible
- Domain structure can be controlled
 - Film thickness
 - Film orientation (azimuthal rotation)
 - Strong field pulse
- Look for change to low T behaviour but same high T behaviour
 - We've observed Type II -> Type I signal after strong field pulse

Research Idea III: System Relaxation

- In 2DXY model, approach to equilibrium near critical point may depend on initial state
 - Free vortices and bound pairs have different relaxation
- Investigate system relaxation in various ways
 - Heat to different points near critical temp and observe relaxation
 - Heating vs cooling, heating/cooling rate, different field strengths

Finite-Size Effects and Anisotropy

- Logarithmic divergence of 2D spin wave fluctuations with system size, N
 - spin-waves only disrupt long range order for systems much larger than are experimentally feasible
 - Allows for a finite magnetization, but with no fixed direction
- Anisotropy can trap the finite magnetization along a specific direction
 - Allows for measurement of finite magnetization at non-zero temperatures

$$\langle |\mathbf{M}| \rangle \propto \left(\frac{1}{2N}\right)^{\frac{k_B T}{8\pi J}} = \left(\frac{1}{2N}\right)^{\frac{1}{16}}$$

$$\langle M \rangle = 0$$

 $\langle |\boldsymbol{M}| \rangle \neq 0$

Research Idea I: Nature of Double Peaks

Double peak observed in Type II signals at low field

- What is the physical origin?
- High T peak is vortex binding/unbinding?
- Low T peak is melting of domain walls?
- Find fitted parameters T^* , T_{KT}
 - Compare to peak locations

$$\frac{T^* - T_{KT}}{T_{KT}} = \frac{b^2}{4(\ln L)^2} \qquad B = (2 - \eta)b$$

$$(T_C(L) - T_{KT}) = 4(T^* - T_{KT})$$

$$\chi(T) = \chi_0 \exp$$

