CAP CONGRESS - 2019

Potential mapping in GaN NW p-n junctions via off-axis electron holography

Anitha Jose Simon Fraser University

Motivation

Basic element - GaN NW p-n junctions

GaN NW-LED

Understanding dopant incorporation

crucial for better-performing devices

Sadaf, S. M., Ra, Y. H., Nguyen, H. P. T., Djavid, M. & Mi, Z. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes. *Nano Lett.* **15**, 6696–6701 (2015)

Growth of NWs

Grown by Molecular Beam Epitaxy

```
p-type dopant : Mg (5x10^{17}/cm^3) n-type dopant : Si (10^{19}/cm^3)
```


Objectives

- To confirm the presence of p-n junction in GaN NW
- > To understand the dopant incorporation in the NW.

Bright field image and SAD pattern

p

n

Electron Holography

Lehmann, M. & Lichte, H. Tutorial on Off-Axis Electron Holography, Microscopy and Microanalysis, 8,447–466. (2002).

Phase shift from Potential

Phase changes due to potential and magnetic sources

Phase change $\Delta \phi$ recorded in hologram

$$\Delta \varphi(x,y) = C_E \int_0^t V(x,y,z) dz$$

z =incident beam direction

(x,y) = the sample plane

V= Potential source

 C_E = constant that depends on the incident beam energy

$$t = thickness$$

Hologram

Corresponding BF and phase images

Phase image and corresponding radial profile

$$\Delta \varphi(x,y) = C_E \int_0^t V(x,y,z) dz$$

z = incident beam direction (x,y) = the sample plane V= Potential source C_E = constant that depends on the incident beam energy t = thickness

NW Width vs. Position

Thickness Estimation

$$A(x, y) = \exp(-\frac{t(x,y)}{2\lambda}),$$

 $t(x,y) = \text{thickness}$
 $A(x,y) = \text{amplitude}$
 $\lambda = \text{mean free path}$

Thickness Profile of the NW

Expected Potential

Potential Profile of the NW

Potential Profile

Conclusions

p-type side was wider with high density of basal plane stacking faults compared to n-type side.

The position of the junction was close to the area with an abrupt change in diameter. The p-n junctions had an average built-in potential of 2.0 ± 0.6 V and a depletion width of 40 ± 9 nm.

possible reasons - lower dopant activation or beaminduced electron-hole generation.

References

- 1. S. M. Sadaf, et al. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes, Nano Letters, 15, 6696-6701. (2015)
- 2. Lehmann, M. & Lichte, H. Tutorial on Off-Axis Electron Holography, Microscopy and Microanalysis, 8,447–466. (2002).
- 3. Darbandi, A *et al*. Direct Measurement of the Electrical Abruptness of a Nanowire p-n Junction, *Nano Letters*, 16, 3982–3988. (2016).
- 4. Cristina Cordoba *et al,* Three-Dimensional Imaging of Beam-Induced Biasing of InP/GaInP Tunnel Diodes, Nano Letters. (2019).
- 5. Wong, et al. The mean inner potential of GaN measured from nanowires using offaxis electron holography, *Mater. Res. Soc. Symp. Proc*, 892, 1–6 (2019).

Thank You