Fabricating van der Waals heterostructures

Outline

Introduction

Methods of fabricating new materials
- The transfer setup
- Transfer methods
- Rotational alignment
- Cleaning procedures

2D material heterostructures for quantum confinement
Outline

Introduction

Methods of fabricating new materials
- The transfer setup
- Transfer methods
- Rotational alignment
- Cleaning procedures

2D material heterostructures for quantum confinement
Van der Waals materials

Crystal:
- Layered structure

Bonding:
- Strong in-plane covalent bonds
- Weak out-of-plane van der Waals bonds

Van der Waals materials span the entire spectrum of electronic properties

3D to 2D

Adhesive tape

Si/SiO₂

3D

cope (100X)

2L graphene

Graphite

20μm

van der Waals heterostructures

New platform for quantum dots

Introduction

Methods of fabricating new materials
- The transfer setup
- Transfer methods
- Rotational alignment
- Cleaning procedures

2D material heterostructures for quantum confinement
The transfer setup

Optical microscope

Long working distance objectives

100X, 4.5mm W.D. 5X, 23.5mm W.D. 50X, 11mm W.D.
The transfer setup

Bottom Stage:

XYZθ motion

Heated stage
Top Stage:

XYZ motion
(10nm step size)
The transfer setup

Computer controlled
 • Programmed with LabVIEW

High resolution camera

Hands free
 • Possibility to be moved into a glovebox
Transfer methods

Various methods:
- PMMA/PVA\(^1\)
- Stamping\(^2\)
- Pick-up\(^2\)

Polymers:
- PMMA
- PVA
- PPC
- PDMS

Rotational alignment
Cleaning procedures

Polymer residues

2nd layer
1st layer
Si/SiO₂

Bubbles and wrinkles

2nd layer
1st layer
Si/SiO₂
Cleaning procedures - thermal annealing
Outline

Introduction

Methods of fabricating new materials
- The transfer setup
- Transfer methods
- Rotational alignment
- Cleaning procedures

2D material heterostructures for quantum confinement
Quantum confinement in 2D materials - graphene
Quantum confinement in 2D materials – MoS$_2$

Quantum confinement
Quantum confinement

$V_{BG} = 60 \text{ (V)}$

$V_{BG} = 42 \text{ (V)}$
Summary

Introduction – 2D materials

Methods to assemble custom, new, ultrathin crystals

2D material heterostructures for quantum confinement
Prof. Adina Luican-Mayer group

Ryan Plumadore
Samantha Scarfe

Collaborators:
- Cleanroom facilities (uOttawa)
- Raman spectroscopy
 Center for Advanced Materials Research
- National Research Council (NRC)